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Introduction

The theory of p-adic modular forms has been introduced to study congruences between modu-
lar forms. It has been developed by many authors, especially Serre, which studied modular forms
through their q-expansion in [Se]. He de�nes then p-adic modular forms as p-adic limits of classical
modular forms. A key observation is that a p-adic modular form has a weight, which is a p-adic
integer.
A geometric interpretation has been given by Katz ([Kat1]), using the modular curve, and the de-
�nition of modular forms as sections of modular sheaves on this space. He de�nes a p-adic modular
form as a section of a certain sheaf on a special locus, the ordinary locus. This locus is de�ned
as the locus where the universal elliptic curve is ordinary at p (its p-torsion is an extension of a
multiplicative part and an étale part). This is also the non vanishing locus of a certain function,
the Hasse invariant (which is the Eisenstein series Ep−1 in this case).
A deeper notion is the one of overconvergent modular forms, introduced by Katz ([Kat1]) : these
are de�ned as sections on a strict neighborhood of the ordinary locus. They are easily de�ned for
classical weights, as one has a modular sheaf on the whole variety. De�ning the sheaves for p-adic
weights is a more di�cult task, done in [Pi1].
To achieve this, one needs two important tools : the Hasse invariant, and the canonical subgroup.
Indeed, one can prove that on a strict neighborhood of the ordinary locus there exists a special sub-
group inside the p-torsion of the elliptic curve, called the canonical subgroup. It is of multiplicative
type on the ordinary locus, and can be explicitly described on a strict neighborhood.
An important result, proved by Coleman [Col], is that an overconvergent modular form of classical
weight is indeed classical if it is an eigenform for a Hecke operator, and the valuation of the eigeva-
lue (the slope) is small enough. Such a result is known as a classicality theorem. Another method
has then been given by Buzzard and Kassaei ([Bu], [Ka]), using an analytic continuation method.
Starting with an overconvergent modular form with the desired hypothesis, one extends it on the
whole variety, and thus proves that it is classical.

This theory has then been developed for more general varieties, especially Hilbert modular forms.
One still has an ordinary locus, and one can then de�ne overconvergent modular forms. The de�-
nition of the modular sheaves has been done in [AIP], and classicality results have been obtained
in [Sa1], [PS], [Bi1]. Actually, one can consider general Shimura varieties ; the construction of the
p-adic modular sheaves has been done in [AIP2], [Br] and the classicality result has been obtained
in [BPS], [Bi2]. One issue is that in some cases, the ordinary locus may be empty. This situation has
been studied in [We] : this locus is non empty if and only if the prime p totally splits in the re�ex
�eld (assuming the datum is unrami�ed at p). For Hilbert or Hilbert-Siegel varieties, the re�ex �eld
is equal to Q, and this condition is automatically satis�ed. However, for other Shimura varieties this
may not be the case, and this seems to be an issue to adapt the theory of overconvergent modular
forms.

Let us say a few words on the two main tools used in this theory : the Hasse invariant and the
canonical subgroup. The Hasse invariant is de�ned thanks to the Verschiebung, acting on the sheaf
of di�erentials. When one considers a variety with extra structure, one can moreover decompose
this function as a product of primitive Hasse invariants. These are quite natural in the unrami�ed
setting, and more involved when one allows rami�cation. The latter situation has been studied in
[RX] in the Hilbert case.
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Many authors have worked on the canonical subgroup, see for example [AM], [Con], [Fa2]. The
result from Fargues states that if the valuation of the Hasse invariant of a p-divisible group is small
enough, there exists a special subgroup called the canonical subgroup. He also gives information
about this subgroup, especially a relation between its degree and the Hasse invariant.
A drawback of this result is that it is only valid for p ̸= 2 ; another one is that it does not give a
de�nition for a canonical subgroup. We give here a di�erent approach : we give a simple de�nition
for the canonical subgroup, prove that if it exists it is unique, and then prove the desired proper-
ties. Moreover, when one considers a p-divisible group with an action, one can de�ne partial degrees
for any subgroup. We are then able to relate the partial degrees of the canonical subgroup to the
primitive Hasse invariants.
An important notion for p-divisible groups is the notion of duality : one can de�ne the Cartier
dual of a p-divisible group G. If G has height h and dimension d, then the dual GD has height
h and dimension h − d. Fargues explored in [Fa2] the behavior of the canonical subgroup under
duality. More precisely, he proved that the Hasse invariants for G and GD can be identi�ed, and
the canonical subgroup for G induces a canonical subgroup for GD.
We give a simpler proof for this result, and extends it to primitive Hasse invariants. The key point
is to introduce the Hodge �ltration and the conjugate �ltration as in [EV] ; the Hasse invariant is
then obtained by the relative position of these subsheaves inside a certain sheaf.

All of this was possible under the assumption that the ordinary locus was non empty. This in-
cludes in particular the cases of Hilbert modular varieties and Hilbert-Siegel modular varieties.
However, for unitary Shimura varieties, the ordinary locus may be empty. This is in particular the
case for the Picard variety with a prime p inert in the quadratic �eld. Looking at the geometry of
the variety, on still �nds that one has a special locus, called the µ-ordinary locus. It is an open and
dense subset of the special �ber, and is equal to the ordinary locus when this latter is non empty.
It has been studied in the case when the prime p is unrami�ed in [We] and [Mo]. One can then try
to adapt the theory of overconvergent modular to this context, using the µ-ordinary locus.
In [Bi3], we consider such a variety (in the unrami�ed situation), and show how to generalize our
previous approach to the canonical subgroup. The main di�erence is that one has a canonical �l-
tration in this setting (i.e. several subgroups in the p-torsion, each of them canonical). We give a
de�nition for this notion, and prove that if such a �ltration exists, it is necessarily unique. We then
give a de�nition for overconvergent modular forms (of classical weights), and prove a classicality
result in this context.
Other works have been done in this direction. First of all, a µ-ordinary Hasse invariant has been
constructed in [GN], [KW] and [He]. In [He2], Hernandez proved that if the valuation of the µ-
ordinary Hasse invariant is small enough, a canonical �ltration exists. Note that this result is only
valid for some prime p bigger than a constant. He also gives information about the subgroups of
this �ltration ; more precisely, he relates a linear combination of their partial degrees to a partial
Hasse invariant. Finally, in [He3], Hernandez constructs the modular sheaves of p-adic weights, thus
giving a de�nition for overconvergent modular forms of p-adic weights.
The relation obtained by Hernandez about the subgroups in the canonical �ltration is not opti-
mal. Indeed, he can only compute a linear combination of their partial degrees, whereas in the
ordinary setting, one can compute all the partial degrees of the canonical subgroup. We solve this
question by introducing re�ned partial Hasse invariants. They are not de�ned globally, unless one
introduces a �ag variety. For a p-divisible group over a valuation ring, this gives new invariants,
and one can prove that the µ-ordinary Hasse invariant is equal to a product of these re�ned partial
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Hasse invariants. Finally, we relate the partial degrees of each subgroup of the canonical �ltration
(when it exists) to these re�ned partial Hasse invariants. Note that this result in unconditional on p.

The previous results were obtained in the case where the prime p is unrami�ed in the datum.
The geometry of the Shimura variety has been extensively studied, and many results have been
obtained in this case. The case where the prime p rami�es is much deeper. The de�nition of the
variety is itself an issue. Even for the Hilbert modular variety, one can de�ne the variety as in
[Ra], with the so called Rapoport condition. The associated space is smooth, but the compacti�ed
space is not proper. One can also consider the Deligne-Pappas model ([D-P], which has a proper
compacti�cation, but is not smooth. Actually, the smooth locus is exactly the Rapoport locus (i.e.
points satisfying the Rapoport condition).
To solve these issues, one can consider the models constructed by Pappas and Rapoport ([PR1],
[PR2], [PR3]). Note that the de�nition of the integral models depends on a choice of an ordering
for the embeddings of the totally real �eld, but the special �ber does not. This de�nition is actually
valid for more general Shimura varieties, especially the ones associated to unitary groups. However,
none of the objects accessible in the unrami�ed case (µ-ordinary locus, Hasse invariant, canonical
�ltration) are accessible, and very little of the geometry of the variety is known.
In [BH1], we consider a p-divisible group with a rami�ed action over a perfect �eld of characteristic
p, with a PR datum, thus making a local study of the situation encountered in the above varie-
ties. We de�ne the Newton and Hodge polygons, and prove that they lie above a certain polygon
depending on the datum, that we call the PR polygon. We say that the group is µ-ordinary if the
Newton polygon is equal to the PR polygon ; it states that the structure of the p-divisible group is
the best possible given the imposed conditions. If the Hodge polygon is equal to the PR polygon,
we say that the group satis�es the generalized Rapoport condition. This means that the structure
of the Lie algebra is the best possible given the imposed conditions. This notion coincides with the
Rapoport condition in the Hilbert case, hence the terminology.
We then study in further details the µ-ordinariness notion : we prove that over an algebraically
closed �eld, it is isomorphic to an explicit group. We also construct a µ-ordinary Hasse invariant,
i.e. a section of a sheaf such that the group is µ-ordinary if and only if this section is non zero.
Once this local study achieved, we turned to the global point of view, and to the geometry of the
Shimura varieties de�ned by the Pappas-Rapoport condition. In particular, we prove in [BH2] that
the varieties are smooth. We also prove that the µ-ordinary locus, and the generalized Rapoport
locus are dense.
One big di�erence with the unrami�ed case is that the Hodge polygon we de�ne varies on the
variety. One idea is thus to try to de�ne a strati�cation on this variety using the Hodge polygon.
The problem is that the naive approach only gives a weak strati�cation (the closure of a stratum is
included but may not be equal to a union of strata). One would then need to de�ne a �ner invariant
that the Hodge polygon. One could think about the isomorphism class of the Lie algebra with the
PR datum. However, this does not give a �nite number of strata.
We solve this question in [Bi7] for rami�cation index e less or equal than 3. The problem is empty
when it is equal to 1, and the Hodge polygon induces a strong strati�cation when it is equal to
2. When e = 3, we show that one should consider the total Hodge polygon, as well as the Hodge
polygon of the graded parts. The strati�cation is thus indexed by three polygons, and gives indeed
a strong strati�cation.
We present here some conjectures about the canonical �ltration in the rami�ed case. One big di�e-
rence with the unrami�ed setting is that when one considers a p-divisible group G with a rami�ed
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action, one can consider the π-torsion, instead of the p-torsion. One possible de�nition of the cano-
nical �ltration would be to de�ne a �ltration on the π-torsion. However, the subgroups introduced
are not related to the Hasse invariants constructed in this context. Our solution is to consider a
�ltration 0 ⊆ C1 · · · ⊆ Ce such that Ck belongs to the πk-torsion of G. We then express some
conjectural relations between the degrees of these subgroups and the Hasse invariants.

Finally, we turn to the study of overconvergent modular forms for Shimura varieties with rami-
�ed datum. We use our de�nition of the µ-ordinary locus, and the canonical �ltration to give a
de�nition for overconvergent modular forms of classical weights. We introduce what we believe to
be the relevant Hecke operator acting on both classical and overconvergent modular forms. We then
express a classicality conjecture.

The interest of overconvergent modular forms is of course to be able to consider families of such
forms, and to consider overconvergent modular forms of non classical weight. We hope that this
could be achieved, generalizing the works of [AIP2], [Br], and then to construct eigenvarieties in
this setting.
Let us mention two topics of research developed recently, which would be interesting to further
study. First, there is the theory of adic eigenvarieties, developed by Andreatta, Iovita and Pilloni
in [AIP3] and [AIP4]. These are used to consider overconvergent modular forms in characterstic p.
They need to use adic spaces instead of a rigid-analytic variety.
Secondly, we mention the development of higher Hida theory ([BP], [Gr]), when one should consider
the spaces of cohomology Hi(X,ωκ), with i > 0. When i = 0, this is the theory of overconvergent
modular forms, and the authors aim to develop a similar theory in all cohomological degree.

Let us now present the organization of the text. In section 1, we give the de�nition and properties
of a p-divisible group with a rami�ed action and a PR datum over a perfect �eld of characteristic p.
In particular, we de�ne the notion of µ-ordinariness. In section 2, we explain the construction of the
µ-ordinary Hasse invariants, and study the relation with duality. Section 3 is devoted to the theory
of the canonical subgroup and the canonical �ltration. We explain the de�nition and properties in
the unrami�ed case, and give some conjectures in the general case. We turn to the global study in
section 4. We consider varieties de�ned thanks to the PR datum, and study their geometry. Finally,
we give some applications to overconvergent modular forms in section 5. In the context of a rami�ed
action, the statements are still conjectures.
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We �x once and for all a prime p.

1 p-divisible groups with Pappas-Rapoport datum

1.1 Hodge and Newton polygons

In this section, we introduce some notations, and the main objects that we study.

Let k be a perfect �eld of characteristic p, and let W (k) be the ring of Wit vectors of k. Let
σ be the Frobenius acting on W (k). Let G be a p-divisible group over k. To G one can attach its
Dieudonné module (M,F, V ) : M is a free W (k)-module of �nite rank, F : M → M is a σ-linear
map, V : M → N is a σ−1-linear map such that FV = V F = p id (see [Fo] part III).

Let L be a �nite extension of Qp, Lur the maximal unrami�ed extension contained in L and kL the
residue �eld of L. Let f be the residual degree, e the rami�cation index and π a uniformizer in L.
Let OL and OLur = W (kL) be the ring of integers of L and Lur, and we suppose that k contains
kL.

De�nition 1.1.1. An action of OL on G is a morphism

OL → End(G).

We suppose that the p-divisible group G has an action of OL. This induces an action of OL

on the Dieudonné module M . In particular, M has an action of OLur ; if T denotes the set of
embeddings from OLur to W (k), one has a natural decomposition

M =
⊕
τ∈T

Mτ

where Mτ is the submodule of M where OLur acts by τ . The Frobenius F induces σ-linear maps

Fτ : Mσ−1τ → Mτ .

Similarly, the Verchiebung V induces σ−1-linear maps Vτ : Mτ → Mσ−1τ . The modules (Mτ )τ∈T
are then free W (k)-modules with the same rank. Let us de�ne for τ ∈ T the ring of rami�ed Witt
vectors

WOL,τ (k) := W (k)⊗OLnr ,τ OL.

The ring WOL,τ (k) is a discrete valuation ring with uniformizer π. The valuation is normalized
on this ring by v(p) = 1. The morphism σ extends to a morphism WOL,τ (k) → WOL,στ (k) by
σ(π) = π.
The modules Mτ are then free over WOL,τ (k) of rank h which is independent of τ . We call h the
normalized height of G (the usual height being efh).
Let us now de�ne the Hodge and Newton polygons for G. Let τ ∈ T ; from the elementary divisors
theorem, applied to the modules FτMσ−1τ ⊆ Mτ , there exist elements aτ,1, . . . , aτ,h in WOL,τ (k)
such that

Mτ/FτMσ−1τ ≃
h⊕

i=1

WOL,τ (k)/aτ,iWOL,τ (k)

One can of course suppose that the valuations of the elements aτ,i are ordered :
v(aτ,1) ≤ v(aτ,2) ≤ · · · ≤ v(aτ,h).
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De�nition 1.1.2. The Hodge polygon of G relatively to τ is the polygon on [0, h] whose break points
have integral x-coordinates de�ned by HdgOL,τ (G)(0) = 0 and

HdgOL,τ (G)(i) = v(aτ,1) + · · ·+ v(aτ,i)

for 1 ≤ i ≤ h. The Hodge polygon of G is de�ned as the mean of the polygons HdgOL,τ (G), i.e.

HdgOL
(G)(i) =

1

f

∑
τ∈T

HdgOL,τ (G)(i)

for 0 ≤ i ≤ h.

The initial and terminal points of HdgOL,τ (G) are then (0, 0) and (h, v(detFτ )), where the de-
terminant of Fτ is seen as en element of WOL,τ (k).

Let us consider the morphism F f : Mτ → Mτ . Up to enlarging the �eld WOL,τ (k)[1/p] to a
�eld K by adding roots of π, one can assume that the matrix of F f acting on Mτ in a certain basis
has the form  λ1 . . . ⋆

. . .
...
λh


where λi ∈ K with v(λ1) ≤ · · · ≤ v(λh).

De�nition 1.1.3. The Newton polygon of G is the polygon on [0, h] whose break points have integral
x-coordinates de�ned by NewtOL

(G)(0) = 0 and

NewtOL
(G)(i) =

v(λ1) + · · ·+ v(λi)

f

for 1 ≤ i ≤ h.

Dieudonné-Manin theory proves that this polygon is well de�ned, and is independent of the
choice of the embedding τ . The initial and terminal points of this polygon are the same as those of
HdgOL

(G).

Remark 1.1.4. If Newt(G) et Hdg(G) are the Newton and Hodge polygons of G (without taking
into account the action of OL), the slopes of Newt(G) are exactly those of NewtOL

(G), each with
multiplicity ef . However, the slopes of Hdg(G) and HdgOL

(G) are not related in general.

1.2 Pappas-Rapoport datum

We suppose that we are given a collection of integers µ = (dτ,i)τ∈T ,1≤i≤e. A Pappas-Rapoport
datum for G is de�ned as follows. Let ωG be the dual of the Lie algebra of G. We recall that one
has an identi�cation ωG ≃ M/FM , and that one has a decomposition

ωG =
⊕
τ∈T

ωG,τ

with OLur acting by τ on ωG,τ .
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De�nition 1.2.1. A Pappas-Rapoport datum for G (PR in short) for the integers µ is a �ltration
for each τ ∈ T

0 = ω
[0]
G,τ ⊆ ω

[1]
G,τ ⊆ ω

[2]
G,τ ⊆ · · · ⊆ ω

[e]
G,τ = ωG,τ

such that
� ω

[i]
G,τ is a vector subspace of ωG,τ for all 1 ≤ i ≤ e and τ ∈ T .

� π · ω[i]
G,τ ⊆ ω

[i−1]
G,τ for all 1 ≤ i ≤ e and τ ∈ T .

� if we write Gr[i] ωG,τ := ω
[i]
G,τ/ω

[i−1]
G,τ , then dimk Gr[i] ωG,τ = dτ,i for all 1 ≤ i ≤ e and τ ∈ T .

Let τ ∈ T ; for every 1 ≤ i ≤ e, let us consider the convex polygon on [0, h] whose break points
have integral x-coordinates with slopes 0 with multiplicity h − dτ,i and 1/e with multiplicity dτ,i.
We de�ne the Pappas-Rapoport polygon PRτ (µ) as the mean of these polygons for 1 ≤ i ≤ e.
Explicitly, one has

PRτ (µ)(j) =
1

e

e∑
i=1

max(j − h+ dτ,i, 0).

Looking at the length ofMτ/FτMσ−1τ asWOL,τ (k)-module, one sees thatHdgOL,τ (G)(h) = PRτ (µ)(h).
In other words, the polygons HdgOL,τ (G) and PRτ (µ) have the same initial and terminal points.
We de�ne the polygon PR(µ) as the mean of the polygons PRτ (µ) for τ ∈ T . The polygons
HdgOL

(G), NewtOL
(G) and PR(µ) have the same start and end points.

1.3 Properties

If G is a p-divisible group over k with an action of OL, and with a PR datum for the integers
µ = (d•), one has three polygons : the Hodge polygon, the Newton polygon and the Pappas-
Rapoport polygon. Moreover, there exist relations between these polygons. If P1 and P2 are two
polygons on [0, h], we say that P1 ≥ P2 if P1(x) ≥ P2(x) for x ∈ [0, h].

Theorem 1.3.1 ([BH1] Th. 1.3.1). Let G be a p-divisible group over k with an action of OL, and
with a PR datum for the integers µ = (d•). The one has the inequalities

NewtOL
(G) ≥ HdgOL

(G) ≥ PR(µ).

One also has a Hodge-Newton decomposition result in this context. We refer to [Kat2] Th. 1.6.1
for the calssical Hodge-Newton decomposition result.

Theorem 1.3.2 ([BH1] Th. 1.3.2). Let G be a p-divisible group with action of OL with normalized
height h. Let aτ,1 ≤ · · · ≤ aτ,h be the slopes of HdgOL,τ (G) for τ ∈ T and λ1 ≤ · · · ≤ λh the

ones for NewtOL
(G). Assume that there exists a point (i, j) ∈ N × 1

efN which is a break point of

NewtOL
(M,F ) and that lies on HdgOL

(G). Then there exists a unique decomposition G = G1×G2,
where G1, G2 are p-divisible groups with action of OL and such that

� G1 has normalized height i, NewtOL
(G1) has slopes λ1, . . . , λi and HdgOL,τ (G1) has slopes

aτ,1, . . . , aτ,i for every τ ∈ T .
� G2 has normalized height h − i,NewtOL

(G2) has slopes λi+1, . . . , λh and HdgOL,τ (G2) has
slopes aτ,i+1, . . . , aτ,h for every τ ∈ T .

Let us introduce the following notions.
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De�nition 1.3.3. We say that G satis�es the generalized Rapoport condition if HdgOL
(G) =

PR(µ).
We say that G is µ-ordinary if NewtOL

(G) = PR(µ).

Remark 1.3.4. Assume that all the integers dτ,i are equal ; we refer to this as the ordinary case.
Then the polygon PR(µ) has slopes 0 and 1 in this case. The generalized Rapoport condition is thus
equivalent to the fact that ωG is free as a k⊗Zp OL-module, which is often referred as the Rapoport
condition. The notion of µ-ordinariness is the usual ordinariness notion in this case.

One has the following characterization of being µ-ordinary.

Theorem 1.3.5 ([BH1] Th. 3.2.1). Assume that k is algebraically closed. There exists a p-divisible
group Xord such that the following assertions are equivalent.

� G is µ-ordinary
� G is isomorphic to Xord

� G[p] is isomorphic to Xord[p].

Let us say a few words on the p-divisible group Xord. It is expressed as a product Xord =
G1× · · ·×Gh, each Gi being of normalized height 1.Each Gi is de�ned explicitly with its Diedonné
module. Let us be more precise.
Let β = (βτ )τ∈T be integers with 0 ≤ βτ ≤ e for each τ ∈ T . We de�ne the Dieudonné module
(Mβ , F, V ) by Mβ =

⊕
τ∈T Mβ,τ with Mβ,τ = WOL,τ (k) for every τ ∈ T . The Frobenius Fτ :

Mβ,σ−1τ → Mβ,τ and the Verschiebung Vτ : Mβ,τ → Mβ,σ−1τ are de�ned by

Fτ (x) = πβτσ(x) et Vτ (y) = pπ−βτσ−1(y)

for every τ ∈ T , x ∈ Mβ,σ−1τ and y ∈ Mβ,τ . Remark that the valuation of pπ−βτ is equal to
1− βτ/e ≥ 0.
This module has an action of OL, and has normalized rank 1. Let Xβ be the p-divisible group
associated to the Dieudonné module (Mβ , F, V ). It is a p-divisible group over k of height ef with
an action of OL. The polygons NewtOL

(Xβ) and HdgOL
(Xβ) are equal and have one slope equal

to (
∑

τ∈T βτ )/(ef).
Let r be the cardinality of the set {dτ,i, τ ∈ T , 1 ≤ i ≤ e} ∩ [1, h− 1]. We write

0 < D1 < · · · < Dr < h

the elements of this set. Let D0 = 0 and Dr+1 = h. Let 1 ≤ j ≤ r + 1 ; for τ ∈ T , we de�ne
αj,τ to be the cardinality of the set {1 ≤ i ≤ e, dτ,i ≥ Dj}. We de�ne αj = (αj,τ )τ∈T ; since αj,τ

are between 0 and e, one has the p-divisible group Xαj
over k. Remark that αj+1 ≤ αj for every

1 ≤ j ≤ r.

De�nition 1.3.6. We de�ne the p-divisible Xord over k by

Xord :=

r+1∏
j=1

XDj−Dj−1
αj

10



2 Hasse invariants

2.1 Ordinary case

Let S be a kL-scheme, and let G → S be a p-divisible group of dimension d0 and height h0. The
classical Hasse invariant is obtained thanks to the Verschiebung

V : ωG → ω
(p)
G

where ωG is the dual of the Lie algebra of G, and the superscript denotes a twist by the Frobenius.
The Hasse invariant of G, ha(G) is obtained by taking the determinant of the above map, and is
then a section of the sheaf det(ωG)

p−1. By convention, this sheaf is the trivial one if d0 = 0, and
the Hasse invariant is then equal to 1 in this case.
Let GD be the Cartier dual of G ; it has dimension h0 − d0 and height h0. One has the following
compatibility for the Hasse invariant.

Theorem 2.1.1. We have an isomorphism ωp−1
G ≃ ωp−1

GD . The elements ha(G) and ha(GD) are

identi�ed under the induced isomorphism H0(S, ωp−1
G ) ≃ H0(S, ωp−1

GD ).

This was proved by Fargues in [Fa2] Proposition 2. The simplest way to prove this is to introduce
the sheaf E , the evaluation of the contravariant Diedudonné crystal of G at S (see [BBM] section
3.3). It is a locally free sheaf of rank h0 on S. Moreover, one has the exact sequence

0 → ωG → E → ω∨
GD → 0

the last term being the dual of ωGD . If F denotes the Hodge �ltration (which induces the above
exact sequence), the key is to introduce the conjugate �ltration F̃ = KerV . The Hasse invariant
of G is then obtained by taking the determinant of the natural map F → E/F̃ , whereas the Hasse
invariant of GD is obtained with the determinant of the natural map F̃ → E/F (see [Bi6] Th. 2.1.4).

When one considers p-divisible groups with an action, one can say more : indeed the classical
Hasse invariant can be expressed as a product of primitive Hasse invariants. Let us �rst de�ne the
PR datum in this context. Assume that G has an action of OL. This implies the decomposition

ωG =
⊕
τ∈T

ωG,τ

with OLur acting by τ on ωG,τ . Now let us de�ne the PR datum for G. Let µ = (dτ,i)τ∈T ,1≤i≤e be
a collection of integers.

De�nition 2.1.2. A PR datum for G is a �ltration 0 = ω
[0]
G,τ ⊆ ω

[1]
G,τ ⊆ · · · ⊆ ω

[e−1]
G,τ ⊆ ω

[e]
G,τ = ωG,τ

for each τ ∈ T , such that

� each ω
[j]
G,τ is locally a direct summand of ωG,τ

� ω
[j]
G,τ/ω

[j−1]
G,τ is locally free over OS of rank dτ,j for all 1 ≤ j ≤ e.

� π · ω[j]
G,τ ⊆ ω

[j−1]
G,τ for all 1 ≤ j ≤ e.

The �rst remark is that if the integers dτ,i are not all equal, then the classical Hasse invariant
is automatically 0.

11



Proposition 2.1.3. Assume that there exists (τ, i) ̸= (τ ′, j) such that dτ,i ̸= dτ ′,j. Then ha(G) = 0.

Démonstration. The Verschiebung sends ω
[e]
G,τ/ω

[e−1]
G,τ to (ω

[e]
G,σ−1τ/ω

[e−1]
G,σ−1τ )

(p) and actually this
maps factors as

ω
[e]
G,τ/ω

[e−1]
G,τ → ω

[e−1]
G,τ /ω

[e−2]
G,τ → · · · → ω

[1]
G,τ → (ω

[e]
G,σ−1τ/ω

[e−1]
G,σ−1τ )

(p)

This facotrization will be detailed later in the section. Therefore, a necessary condition for ha(G)
to be non zero is that all these sheaves have the same rank, hence the result.

Assume in the rest of this section that the integers dτ,i are all equal to an integer d.

De�ne L[j]
τ := det(ω

[j]
G,τ/ω

[j−1]
G,τ ). The classical Hasse invariant then decomposes into primitive Hasse

invariants, see [RX].

Proposition 2.1.4. The classical Hasse invariant can be expressed as a product of the primitive
Hasse invariants

m[j]
τ ∈ H0(S,L[j−1]

τ L[j]
τ

−1
) hasseτ ∈ H0(S, (L[e]

σ−1τ )
pL[1]

τ

−1
)

for τ ∈ T and 2 ≤ j ≤ e.

Let us say a few words about the de�nition of these primitive Hasse invariants. The multiplication
by π induces a map

ω
[j]
G,τ/ω

[j−1]
G,τ → ω

[j−1]
G,τ /ω

[j−2]
G,τ

for τ ∈ T and 2 ≤ j ≤ e. The section m
[j]
τ is obtained by taking the determinant of the above map.

The de�nition of hasseτ is more involved. The sheaf E decomposes as E = ⊕τ∈T Eτ , and each Eτ
is locally free over OS [X]/Xe, with X acting by π. The multiplication by πe−1 thus induces an
isomorphism between Eτ/Eτ [πe−1] ≃ Eτ [π]. Let us consider the following map

ω
[1]
G,τ ↪→ Eτ [π] ≃ Eτ/Eτ [πe−1] →V (ω

[e]
G,σ−1τ/ω

[e−1]
G,σ−1τ )

(p)

where the middle isomorphism is the division by πe−1 and the last map is the Verschiebung. This
map is well de�ned, and taking its determinant gives the section hasseτ .

One has the following result concerning the compatibility with duality. Before stating the result,
let us remark that a PR datum for G naturally induces a PR datum for GD. Indeed, one has a full
�ltration inside Eτ

0 = ω
[0]
G,τ ⊆ ω

[1]
G,τ ⊆ · · · ⊆ ω

[e−1]
G,τ ⊆ ω

[e]
G,τ = ωG,τ ⊆ ω

[e+1]
G,τ ⊆ · · · ⊆ ω

[2e]
G,τ = Eτ

where ω
[e+i]
G,τ := π−iω

[e−i]
G,τ . Indeed, the multiplication by πi induces an isomorphism Eτ/Eτ [πi] ≃

Eτ [πe−i]. Since ω
[e−i]
G,τ is a locally free sheaf inside E [πe−i], the sheaf ω[e+i]

G,τ is a locally free sheaf.
One has then a �ltration on Eτ/ωG,τ ≃ ω∨

GD,τ , and thus on ωGD,τ . One easily checks that this is a

PR datum for GD.
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Proposition 2.1.5 ([Bi5] Th. 3.7, 3.14). The sections m[j]
τ and hasseτ are compatible with duality.

More precisely, one has isomorphisms of sheaves

L[j−1]
G,τ L[j]

G,τ

−1
≃ L[j−1]

GD,τ
L[j]

GD,τ

−1
(L[e]

G,σ−1τ )
pL[1]

G,τ

−1
≃ (L[e]

GDσ−1τ
)pL[1]

GD,τ

−1

under which the primitive Hasse invariants for G and GD are identi�ed.

The result for the sections hasseτ is actually proved under some mild assumptions on S (namely,
that either S is smooth or locally the spectrum of a semi-perfect ring).

2.2 µ-ordinary Hasse invariants

In this section, we remove the assumption that all the dτ,i are equal. The classical Hasse invariant
may be zero in this case, but one can construct a substitution, the µ-ordinary Hasse invariant.
Let us assume that the dτ,i are ordered :

dτ,1 ≥ · · · ≥ dτ,e

Proposition 2.2.1 ([BH1] section 2.2). The exist a section Ha[i]τ ∈ H0(S,L[i]
τ

pf−1
). The product

of these sections give the µ-ordinary Hasse invariant

µ Ha ∈ H0(S, det(ωG)
pf−1)

Let us say more about the construction of these sections Ha[i]τ . The idea is to take the composition
of the Verschiebung V f , and to divide by a suitable power of π. When one considers a p-divisible
group over a perfect �eld k, one can look at its Dieudonné module, which somehow gives a lift of
the Verschiebung in characteristic 0, and one can make the division there. Let us be more precise
about this situation. Assume that G is de�ned over k, and let D be the contravariant Diedudonné
crystal evaluated at W (k). It is equal to the usual Dieudonné module twisted by the Frobenius
(see [BBM] Theorem 4.2.14). This module decomposes as a direct sum ⊕τ∈T Dτ , and one has the
Hodge �ltration ωG,τ ⊆ Dτ/pDτ . Let Fil

[i] Dτ be the inverse image of ω[i]
G,τ for 1 ≤ i ≤ e via the

projection Dτ → Dτ/pDτ .
For any integer d, one can thus construct a map ζdτ :

∧d
Dστ →

∧d
Dτ , which is equal to

∧d
V

divided by πkτ,d with kτ,d =
∑e

i=1 max(d−dτ,i, 0). This map is de�ned using the following diagram.

∧d
Dστ

∧d
Fil[e] Dτ

∧d
Dτ

∧d
Fil[e−1] Dτ

∧d
Fil[1] Dτ

∧d
Fil[0] Dτ

∧d Vστ

πmin(d,dτ,e)

πmin(d,dτ,1)

1

πedπmin(d,dτ,2) ◦ · · · ◦ πmin(d,dτ,e−1)

13



One can also construct a map Divτ,i :
∧dτ,i Fil[i] Dτ →

∧dτ,i Dτ as follows

∧dτ,i Fil[i] Dτ

∧dτ,i Dτ

∧dτ,i Fil[i−1] Dτ

∧dτ,i Fil[1] Dτ

∧dτ,i Fil[0] Dτ

πmin(dτ,i,dτ,i) = πdτ,i

1

π
edτ,i

πmin(dτ,i,dτ,1)

πmin(dτ,i,dτ,2) ◦ · · · ◦ πmin(dτ,i,dτ,i−1)

Finally, let us de�ne a map Mulτ,i :
∧dτ,i Fil[e] Dτ →

∧dτ,i Fil[i] Dτ as the composition

∧dτ,i Fil[e] Dτ

∧dτ,i Fil[e−1] Dτ

∧dτ,i Fil[i+1] Dτ

∧dτ,i Fil[i] Dτ

πmin(dτ,i,dτ,e)

πmin(dτ,i,dτ,i+1)

πmin(dτ,i,dτ,i+2) ◦ · · · ◦ πmin(dτ,i,dτ,e−1)

The map Ha[i]τ :
∧dτ,i Fil[i] Dτ →

∧dτ,i Fil[i] Dτ is then de�ned as the composition

Mulτ,i ◦ (
dτ,i∧

Vστ ) ◦ ζdτ,i
στ ◦ · · · ◦ ζdτ,i

σ−1τ ◦Divτ,i

Let us now turn to the general case, and an arbitrary base S. One can consider the sheaf
E = ⊕Eτ , but it has no lift to characteristic 0. Unfortunately, one cannot divide by π as easily as
before, but one can still use the division by π, which induces an isomorphism Eτ [πe−1] ≃ Eτ/Eτ [π].
One can then de�ne a map ζdτ :

∧d Eστ/π↠
∧d E(p)

τ /π for any integer d, which is analogous to
the one previously de�ned (i.e. corresponds to the Verschiebung divided by a power of π). For a
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OS ⊗Zp
OL-module M, we write M/π := M ⊗OL

(OL/πOL). The section Ha
[j]
τ is thus de�ned

using the composition

∧dτ,i Eτ/π
∧dτ,i Fil[e] E(pf )

τ /π

∧dτ,i(πe−iEτ )/π
∧dτ,i Fil[i] E(pf )

τ /π

∧dτ,i 1

πe−i

(
∧dτ,i Vστ )

(pf−1) ◦ (ζ
dτ,i
στ )(p

f−2) ◦ · · · ◦ ζ
dτ,i

σ−1τ

(
∧dτ,i+1 π ◦ · · · ◦

∧dτ,e π)(p
f )

Here the map
∧dτ,j π is a map which should correspond to the multiplication by πdτ,j .

The main property is that the section µ Ha, the product of the sections Ha
[i]
τ , determines the

µ-ordinary locus.

Theorem 2.2.2 ([BH1] Cor. 3.2.3). Let x be a closed point of S. Then the p-divisible group Gx is
µ-ordinary if and only if µ Ha(x) ̸= 0.

3 Canonical subgroup and canonical �ltration

In this section, K denotes a �nite extension of Qp, and G a p-divisible group over its ring of
integers OK oh height h0 and dimension d0.
If w ≥ 0 is a real, we denote pwOK := {x ∈ OK , v(x) ≥ w} and OK,{w} := OK/pwOK .

3.1 The canonical subgroup and its partial degrees

Considering the reduction of G modulo p, on can consider the (classical) Hasse invariant ha(G),
and get an element in OK/p. Taking its valuation, one gets an element v(ha(G)) ∈ [0, 1].
If C ⊆ G[p] is a �nite �at subgroup, one de�nes its degree degC as the valuation of the determinant
of the map ωG/C → ωG (see [Fa1] for the de�nition and properties of the degree).

We recall the result from Fargues on the canonical subgroup.

Theorem 3.1.1 ([Fa2]). Suppose p ̸= 2, and let G be a p-divisible group of height h0 and dimension
d0 over OK . We suppose that v(ha(G0)) < 1/2, and that v(ha(G0)) < 1/3 if p = 3. Then there
exists a canonical subgroup C0 ⊆ G[p], such that :

� C0 has height d0.
� degC0 = d0 − v(ha(G0)).
� C0 is the kernel of the Frobenius in G×OK

OK,{1−ha(G0)}.
� if v(ha(G)) < 1/(p+ 1) then we have v(ha(G/C0)) = p · ha(G0).

One issue is that the previous result is not valid for p = 2. Another one is that it constructs a
subgroup called the canonical subgroup, but does not give a de�nition for it. An alternative is to
introduce the following notion.

De�nition 3.1.2. Let G be a p-divisible group of height h0 and dimension d0 over OK . Let C0 be
a �nite �at subgroup of G[p]. We say that C0 is the canonical subgroup of G if the height of C0 is
d0 and if degC0 > d0 − 1/2.
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If a canonical subgroup exists, it is necessarily unique, hence the de�nition. Indeed, one has the
following proposition.

Proposition 3.1.3 ([Bi4] Theorem 3.2). Let G be a p-divisible group of height h0 and dimension d0
over OK . Suppose that there exists a canonical subgroup C0. Then C0 is unique. Moreover, we have
the relation degC0 = d0−v(ha(G)), and C0 is the kernel of the Frobenius in G×OK

OK,{1−v(ha(G))}.

When one considers a p-divisible group G with an action of OL, one can say more. Indeed, one
can de�ne partial degrees for �nite �at subgroups of G[p].
Assume that G has an action of OL. Then one has a decomposition ωG = ⊕τ∈T ωG,τ , with OLur

acting by τ on ωG,τ . Let us �x an ordering on Στ = {σ1, . . . , σe}. This gives a �ltration

0 ⊆ ω
[1]
G,τ ⊆ · · · ⊆ ω

[e]
G,τ = ωG,τ

Indeed, one has a direct sum in generic �ber ωG,τ ⊗OK
K = ⊕e

i=1ωG,τ,i,K , with OL acting by σi on
ωG,τ,i,K . Then one de�nes for 1 ≤ i ≤ e

ω
[i]
G,τ := (

i⊕
j=1

ωG,τ,j,K) ∩ ωG,τ

The OK-modules ω[i]
G,τ are free. Assume that each graded part ω[j]

G,τ/ω
[j−1]
G,τ has rank d. This implies

that there is no obstruction for (the reduction modulo p) of G to be ordinary.

De�nition 3.1.4. Let C ⊆ G[p] be a �nite �at subgroup stable by OL. We de�ne the partial degree

deg[j]τ C as the valuation of the map

ω
[j]
G/C,τ/ω

[j−1]
G/C,τ → ω

[j]
G,τ/ω

[j−1]
G,τ

These partial degrees have �rst been introduced in [Sa2] fot the Hilbert modular variety.
Taking the reduction modulo π of G, one sees that the above �ltration gives a PR datum. In
particular, one can de�ne the primitive Hasse invariants hasseτ and m

[j]
τ . These are elements in

OK/π. One can then relate the partial degrees of the canonical subgroup to the primitive Hasse
invariants.

Theorem 3.1.5 ([Bi4] Theorem 3.4). Assume that there exist a canonical subgroup C, and that
v(ha(G)) ≤ min( 12 ,

1
e ). Then

deg[1]τ C[π] = d− v(hasseτ ) deg[j]τ C[π] = d− v(m[j]
τ )

for every τ ∈ T and 2 ≤ j ≤ e.

Actually, one can say much more, and compute the partial degrees of C[πk]. One can also
compute the primitive Hasse invariants for G/C[π]. We refer to [Bi4] section 3 for more details.

3.2 Canonical �ltration in the unrami�ed case

The previous section dealt with the ordinary case, i.e. the classical Hasse invariant and the
canonical subgroup. This implied that the ranks of the graded parts ω[j]

G,τ/ω
[j−1]
G,τ must be constant.
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One can of course ask what happens if this hypothesis is removed. In this section, we will deal with
the unrami�ed case, i.e. we will only consider the action of OLur . One has the decomposition

ωG = ⊕τ∈T ωG,τ

where ωG,τ is a free OK-module. Let dτ be its rank, and let us order these elements d1 ≤ · · · ≤ df .

De�nition 3.2.1. A canonical �ltration is a �ltration by �nite group schemes 0 ⊆ C1 ⊆ · · · ⊆
Cf ⊆ G[p] such that Ci has height fdi and

degCi ≥
f∑

j=1

min(dj , di)−
1

p+ 1

This notion generalizes the canonical subgroup in the ordinary case. One has similar properties.
Recall that one has construct Hasse invariants Haτ in section 2.2, which are elements in OK/p.

Proposition 3.2.2 ([Bi6] Theorem 4.3.3). Assume that a canonical �ltration exists. Then it is
unique. Moreover, let τ ∈ T , and let C be the subgroup in the canonical �ltration of height fdτ .
Then

f−1∑
k=0

pk degσ−kτ C =

f−1∑
k=0

pk min(dσ−kτ , dτ )− v(Haτ )

One can actually more, and compute the partial degrees degτ ′ C. For this, one needs to introduce
the re�ned partial Hasse invariants ; these elements allow us to factor the section Haτ . They do
not exist on an arbitrary base, but one needs the existence of an adequate �ltration on ωG,τ ′ for
each τ ′ ∈ T . We refer to [Bi6] section 1 for the precise de�nitions of adequate �ltrations and re�ned
partial Hasse invariants, and to [Bi6] Theorem 4.3.3 for the following result.

Proposition 3.2.3 ([Bi6] Theorem 4.3.3). Assume that a canonical �ltration exists. Then one can
de�ne adequate �ltrations on ωG,τ and ωGD,τ for every τ ∈ T . Thanks to these �ltrations, the
section Haτ can be factored as

Haτ =

f−1∏
k=0

(ha[k]τ )p
k

If C is the subgroup in the canonical �ltration of height fdτ , then

degσ−kτ C = min(dσ−kτ , dτ )− v(ha[k]τ )

3.3 Towards a de�nition in the general case

One does not have a good theory of the canonical �ltration in the rami�ed setting. We suggest
here a possible de�nition, and a conjecture for the link with the µ-ordinary Hasse invariant.
In this section only, we assume that L is totally rami�ed of degree e. One has a �ltration

0 ⊆ ω
[1]
G ⊆ · · · ⊆ ω

[e]
G = ωG

and let di be the rank of ω[i]
G /ω

[i−1]
G . Assume that we have chosen the ordering such that d1 ≥ · · · ≥

de. In the previous section, one has constructed the Hasse invariants Ha[1], . . . ,Ha[e].
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De�nition 3.3.1. A canonical �ltration for G is a �ltration 0 ⊆ C1 ⊆ · · · ⊆ Ce ⊆ G[p] by �nite
�at group schemes such that

� Ci/Ci−1 has height di.
� π · Ci ⊆ Ci−1.

� deg(Ci/Ci−1) ≥
∑e

j=1
min(di,dj)

e − 1
2 .

One can formulate the following conjecture, which relates the degrees of the subgroups to the
µ-ordinary Hasse invariants constructed in section 2.2.

Conjecture 3.3.2. Assume that a canonical �ltration exists. Then each step of the �ltration is
unique. Moreover, one has the relations

deg(Ci/Ci−1) =

e∑
j=1

min(di, dj)

e
− v(Ha[i])

for every 1 ≤ i ≤ e.

4 Geometry of Shimura varieties

In the �rst section, one studied p-divisible groups over a �eld, giving thus a local approach. One
can have a glocal point of view by studying Shimura varieties, and their geometry.

4.1 De�nition of the varieties

4.1.1 Unitary Case

Let F0 be a totally real �eld, and F/F0 be a CM extension. Let OF be the ring of integers of
F , Σ be the set of embeddings of F into Qp ; let (ασ)σ∈Σ be a collection of integers such that the
quantity h := ασ + ασ does not depend on σ, where σ is the composition of σ with the complex
conjugation. Let K0 be a �nite extension of Qp containing all the embeddings of F into Qp.

De�nition 4.1.1. Let Ynaive be the Shimura variety over OK0
associated to F0/F and the signature

(ασ). It is a moduli space which S-points are the isomorphism classes of (A, λ, ι, η) where
� A → S is an abelian scheme
� λ : A → At is a prime to p polarization.
� ι : OF → End A is compatible with complex conjugation and the Rosati involution, and

satis�es the Kottiwtz condition.
� η is a level structure.

We refer to [Bi3] section 1.1 or [BH2] section 2.4 for more details about this de�nition. The
Kottwitz condition prescribes the characteristic polynomial of any element x ∈ OF acting on the
sheaf ωA, the dual of the Lie algebra of A. More precisely, one requires that the characteristic
polynomial of x acting on ωA should be ∏

σ∈Σ

(X − σ(x))ασ
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Let us now consider the sheaf ωA. One has a decomposition

ωA =
⊕
π

ωA,π

where π runs through the places of F above p. Let us �x such a place π. Let L be the completion
of F at π ; the sheaf ωA,π has thus an action of OL. Let Lur be the maximal unrami�ed extension
contained in L, and T the set of embeddings of Lur into Qp. One has a decomposition

ωA,π =
⊕
τ∈T

ωA,π,τ

One can thus de�ne the PR Shimura variety. Let us �x an ordering σ1, . . . , σe on the embeddings
of L above τ .

De�nition 4.1.2. Let A → S be an abelian scheme as before. A PR datum for ωA,π,τ is a �ltration

0 ⊆ ω
[1]
A,π,τ ⊆ · · · ⊆ ω

[e]
A,π,τ = ωA,π,τ

such that
� ω

[i]
A,π,τ is locally a direct factor, and is stable by OL.

� OL acts by σi on ω
[i]
A,π,τ/ω

[i−1]
A,π,τ .

� ω
[i]
A,π,τ/ω

[i−1]
A,π,τ is locally free over OS of rank ασi

.

De�nition 4.1.3. Let us de�ne YPR as the variety over OK0
classifying (A, λ, ι, η) in Ynaive with

a PR datum on ωA,π,τ for all π and τ . One also requires that the PR datum is compatible with the
polarization.

We refer to [BH2] Def. 2.21 for the precise de�nition. Let us be more precise about the compati-
bility with the polarization. First of all, let us remark that a PR datum for ωA,π,τ naturally induces
one for ωAt,π,τ . Indeed, if E = H1

dR(A), one has a decomposition E = ⊕πEπ, and Eπ = ⊕τ∈T Eπ,τ .
The Hodge �ltration allows us to see ωA,π,τ as a subsheaf of Eπ,τ . Then can then complete the PR
datum

0 ⊆ ω
[1]
A,π,τ ⊆ · · · ⊆ ω

[e]
A,π,τ = ωA,π,τ ⊆ ω

[e+1]
A,π,τ ⊆ · · · ⊆ ω

[2e]
A,π,τ = Eπ,τ

To see this, let us consider an uniformizer π in L, and let π1, . . . , πe be the conjugates of π in
L, and let E(X) =

∏e
i=1(X − πi) be the minimal polynomial of π. Then Eπ,τ is locally free over

OS [X]/E(X), with X acting by π. One then de�nes

ω
[e+l]
A,π,τ := Ql(π)

−1ω
[e−l]
A,π,τ

with Ql(X) =
∏e

i=e−l+1(X − πi). Note that the multiplication by Ql(π) induces an isomorphism

between Eπ,τ/Eπ,τ [Ql(π)] and Eπ,τ [Ql(π)], with Ql(X) =
∏e−l

i=1(X − πi). Since ω
[e−l]
A,π,τ is a locally

free sheaf inside Eπ,τ [Ql(π)], this justi�es the de�nition of ω[e+l]
A,π,τ .

Since (Eπ,τ/ωA,π,τ )
∨ is isomorphic to ωAt,π,τ , one gets the desired �ltration on this sheaf.

Now let us distinguish several cases. Let π0 be the prime of F0 below π.
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� Assume that π0 splits in F as π0 = π ·π′. Then the polarization induces an isomorphism bet-
ween Eπ and Eπ′ . We then ask that the complete �ltrations on Eπ,τ and Eπ′,τ are compatible
with the polarization. We refer to this case as the (AL) case.

� Assume that π0 is inert in F . Then the complex conjugation acts on T , and the polarization
induces an isomorphism between Eπ,τ and Eπ,τ . We then require that the complete �ltrations
on these sheaves are compatible with the polarization. We refer to this case as the (AU) case.

� The case where π0 rami�es in F is more involved. We refer to this as the (AR) case, and will
be dealt with in a future section.

4.1.2 Hilbert-Siegel varieties

Recall that F0 denotes a totally real �eld, and let g ≥ 1 be an integer.

De�nition 4.1.4. Let Ag be the Hilbert-Siegel variety over OK0
associated to F0. It is a moduli

space which S-points are the isomorphism classes of (A, λ, ι, η) where
� A → S is an abelian scheme
� λ : A → At is a prime to p polarization.
� ι : OF0

→ End A satis�es the Kottiwtz condition.
� η is a level structure.

The Kottwitz condition prescribes the characteristic polynomial of any element x ∈ OF0 acting
on the sheaf ωA, the dual of the Lie algebra of A. More precisely, one requires that the characteristic
polynomial of x acting on ωA should be ∏

σ∈Σ

(X − σ(x))g

This is the naive integral model, and one can similarly de�ne an integral model thanks to PR data.
The process is similar as the previous case.
The sheaf ωA decomposes as ⊕π0ωA,π0 , where π0 runs through the places of F0 above p. Let us �x
such a place π0. Let L be the completion of F0 at π0 ; the sheaf ωA,π0 has thus an action of OL. Let
Lur be the maximal unrami�ed extension contained in L, and T the set of embeddings of Lur into
Qp. One has a decomposition

ωA,π0
=

⊕
τ∈T

ωA,π0,τ

One can thus de�ne the PR Shimura variety. Let us �x an ordering σ1, . . . , σe on the embeddings
of L above τ .

De�nition 4.1.5. Let A → S be an abelian scheme as before. A PR datum for ωA,π0,τ is a �ltration

0 ⊆ ω
[1]
A,π0,τ

⊆ · · · ⊆ ω
[e]
A,π0,τ

= ωA,π0,τ

such that
� ω

[i]
A,π0,τ

is locally a direct factor, and is stable by OL.

� OL acts by σi on ω
[i]
A,π0,τ

/ω
[i−1]
A,π0,τ

.

� ω
[i]
A,π0,τ

/ω
[i−1]
A,π0,τ

is locally free over OS of rank g.
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De�nition 4.1.6. Let us de�ne Ag,PR as the variety over OK0 classifying (A, λ, ι, η) in Ag with a
PR datum on ωA,π0,τ for all π0 and τ . One also requires that the PR datum is compatible with the
polarization.

We refer to [BH2] Def. 2.21 for the precise de�nition. The condition about the polarization
is simpler in this situation. Let E = H1

dR(A) ; one has a decomposition E = ⊕π0
Eπ0

, and Eπ0
=

⊕τ∈T Eπ0,τ . The Hodge �ltration implies that ωA,π0,τ is locally a direct factor of Eπ0,τ . One can
then complete the PR datum into a complete �ltration as in the previous section

0 ⊆ ω
[1]
A,π0,τ

⊆ · · · ⊆ ω
[e]
A,π0,τ

= ωA,π0,τ ⊆ ω
[e+1]
A,π0,τ

⊆ · · · ⊆ ω
[2e]
A,π0,τ

= Eπ0,τ

The compatibility with the polarization requires that this complete �ltration is equal to its ortho-

gonal, i.e. ω[e+i]
A,π0,τ

= ω
[e−i]
A,π0,τ

⊥
.

Remark 4.1.7. One has a non degenerate alternating pairing <,> on Eπ0,τ , and ωA,π0,τ is totally

isotropic for that pairing. One has the inclusion ω
[1]
A,π0,τ

⊆ Eπ0,τ [π − π1], and one has a modi�ed
pairing on this space. Recall that Eπ0,τ [π − π1] = Q1(π)Eπ0,τ ; the modi�ed pairing is given locally
by

{Q1(π)x,Q1(π)y} :=< x,Q1(π)y >

The above condition implies that ω
[1]
A,π0,τ

is totally isotropic for this alternating pairing.

More generally, it implies that ω
[i]
A,π0,τ

/ω
[i−1]
A,π0,τ

is totally isotropic for the modi�ed pairing on the
sheaf

(Eπ0,τ/ω
[i−1]
A,π0,τ

)[π − πi]

4.2 Density results

The generic �bers of the spaces Ag,PR and YPR are the same as the ones for the naive models.
One can then be interested in the geometry of the special �ber. Let Ag,PR,s and YPR,s be the special
�bers of these spaces respectively. These are k-scheme, where k is the residue �eld of K0.

Theorem 4.2.1 ([BH2] Th. 2.30). Assume that no prime above p falls in the (AR) case. Then the
schemes Ag,PR,s and YPR,s are smooth.

Let us �x a prime π0 of F0, not in the (AR) case. One thus has integers (dτ,i)τ∈T ,1≤i≤e, and a
p-divisible group G with a PR datum of type (d•).
Let x be a closed point of one of these spaces. Then one can de�ne the polygons NewtOL

(x) and
HdgOL

(x), following 1.1. The generealized Rapoport locus (resp. µ-ordinary locus) is the locus
where the polygon HdgOL

(x) (resp. NewtOL
(x)) is equal to the polygon PR(d•).

Theorem 4.2.2 ([BH2] Th. 3.3 and 4.1). The generalized Rapoport locus, and the µ-ordinary locus
are dense.

For the space Ag,PR,s, the µ-ordinary locus coincides with the usual ordinary locus. For the
space YPR,s, one has the following criterion.

Proposition 4.2.3 ([BH2] Prop. 4.26). The ordinary locus (at π) of YPR,s is non empty if and
only if and only if there exists an integer a such that

ασ = a

for all σ ∈ Σ above π.
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The last condition is also equivalent to the fact that the local re�ex �eld is equal to Qp.

4.3 The Hodge strati�cation for e ≤ 3

One would hope to say more about the geometry of the spaces Ag,PR,s and YPR,s ; let us denote
by Y one of these spaces. More precisely, one could try to look at the variation of the polygons
NewtOL

and HdgOL
, and hope that these would de�ne a nice strati�cation on the variety.

Looking at the Hodge polygon might seem easier, but even then the situation is not as good as one
would expect. A naive approach consist in looking at the Hodge polygon, which gives a description

Y =
∐
P

YP

where P runs through the set of all possible polygons, and YP consists in all the points x whose
Hodge polygon is P . One can see that this de�nes a weak strati�cation, in the sense that the closure
of a strata is included in a union of strata (since the Hodge polygon goes up by specialization).
However, if e ≥ 3, this is not a strong strati�cation : this closure is in general not equal to a union
of strata.
One can then try to consider the isomorphism class of the PR datum. However, for large rami�cation
index e, this does not give a �nite number of strata.
One can be more precise when e ≤ 3. When e = 1, there is nothing to say.
When e = 2, the Hodge polygon is determined by one integer, the dimension of the π torsion of the
sheaf. This integer determines a strong strati�cation.
Assume now that e = 3. Let τ be an element of T , and let us consider the sheaf ωA,π0,τ that we
write ωτ for simplicity. One has a �ltration

0 ⊆ ω[1]
τ ⊆ ω[2]

τ ⊆ ωτ

and let us write d1, d1 + d2, d1 + d2 + d3 the rank of these sheaves. The idea is to consider not only
the polygon Hdg(ωτ ), but the polygons Hdg(ωτ/ω

[1]
τ ) and Hdg(ω

[2]
τ ) as well. These polygons are

de�ned at each point of the variety as follows : if M is a k vector space, which is a K[X]/Xj-module
for some integer j, the polygon Hdg(M) classi�es the structure of M as a k[X]/Xj-module. For
example, if j = 1, this polygon is determined by the dimension of M .
Let k be a �eld, and let C be the set of isomorphism classes of �ltrations 0 ⊆ F1 ⊆ F2 ⊆ F where
F is a k[X]/X3-module, which has dimension d1 + d2 + d3 over k, and F1,F2 is a PR datum for
the integers (d1, d2, d3).

Proposition 4.3.1 ([Bi7] Th. 3.5). The set C is �nite, independent of the �eld k, and an element
of C is determined by the three polygons Hdg(F), Hdg(F/F1) and Hdg(F2).

One can also describe the exact conditions that are imposed on these three polygons. Moreover,
one has a natural order on the set of polygons, hence on C.
For c ∈ C, we denote by Yc the set of points of Y such that the induced �ltration is of class c.

Proposition 4.3.2 ([Bi7] Th. 4.5 and Th. 5.3). One has a strong strati�cation

Y =
∐
c∈C

Yc
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By a strong strati�cation, we mean that the closure of Yc is equal to∐
c′≥c

Yc′

for all c ∈ C.

4.4 The (AR) case

In the previous sections, we excluded the case where a prime in F0 rami�es in F . We study this
situation into more details here.
For simplicity, assume in this section only that F0 = Q. We also assume that p ̸= 2. Thus F is a
quadratic imaginary extension, and assume that p rami�es in F . Let Fp be the completion of F
at p, and π a uniformizer of Fp. We write σ1, σ2 the embeddings of Fp into Qp, and let us de�ne
πi := σi(π). Let a, b be integers with a ≤ b, and de�ne h = a+ b.

De�nition 4.4.1. Let Y0 be the moduli space over OF whose R-points are couples (A, λ, ι, η, ω1),
where

� A is an abelian scheme over R of dimension h
� λ is a polarization
� ι : OF → End(A), making the Rosati involution and the complex conjugation compatible
� η is a level structure
� ω[1] ⊆ ωA is a locally direct factor of rank a, stable by OF

� OF acts by σ1 on ω[1], and by σ2 on ωA/ω
[1].

Let E = H1
dR(A) ; it is a locally free sheaf on Y0 of rank 2h. If has an action of OF , and is

locally free of rank h over OY0 ⊗Z OF . The Hodge �ltration is ωA ⊆ E . The sheaf E has an action
of OFp , and let [u] be the action of u on E for every u ∈ OFp . The last condition implies that
([π]− π1) · ω1 = 0 and ([π]− π2) · ω ⊆ ω1.

Thanks to the polarization, one has a perfect alternating pairing on <,> on E . Let us de�ne
ω[2] ⊆ E by the formula

ω[2] = (([π]− π2)
−1ω[1])⊥

The sheaf ω[2] is locally free of rank b, and one has ω[2] ⊆ ω. Moreover, one has

([π]− π2) · ω[2] = 0 ([π]− π1) · ω ⊆ ω[2]

Let Ys be the special �ber of Y0. We are interested in the geometry of Ys. First let us introduce
some functions on Ys.

De�nition 4.4.2. Let k be a �eld of characteristic p, and let x ∈ Ys(k). Let us de�ne the integers
(h(x), l(x)) as the dimension of π · ω, and ω[1] ∩ ω[2] respectively.

One can prove that one has the inequalities

0 ≤ h(x) ≤ l(x) ≤ a

One then has a strati�cation on Ys

Ys =
∐

0≤h≤l≤a

Ys,h,l
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where Ys,h,l consists of the points x with (h(x), l(x)) = (h, l). One has the following result regarding
the geometry of Ys.

Theorem 4.4.3 ([BH3] Prop. 1.10 and 1.12). Let (h, l) be integers with 0 ≤ h ≤ l ≤ a, and let
Ys,h,l be the closure of Ys,h,l. Then

Ys,h,l =
∐

0≤h′≤h≤l≤l′≤a

Ys,h′,l′

Moreover, the stratum Ys,h,l is nonempty, and is equidimensional of dimension ab− (l−h)(l−h+1)
2 .

The smooth locus of Ys is the union of the strata Ys,h,h for 0 ≤ h ≤ a.

Remark 4.4.4. In special �ber, the pairing <,> induces a modi�ed pairing on E [π] by the formula

{πx, πy} :=< πx, y >

The main di�erence in this case is that this pairing is symmetric, contrary to the case of the Hilbert-
Siegel variety.
The sheaf ω[2] is the orthogonal of ω[1] for this pairing.

In particular, the stratum X0,a is closed and the strata Xh,h are open, for every 0 ≤ h ≤ a.

5 Applications to overconvergent modular forms

The theory of overconvergent modular forms has been developed by Katz, Coleman and many
others. The idea is to study section of modular sheaves on a special locus, and not the whole variety.
First, one must consider the rigid analytic variety associated to the modular curve. One can then
consider the ordinary locus. By de�nition, an overconvergent modular form is a section on a strict
neighborhood of the ordinary locus.
If one considers a classical weight, the modular sheaves is already de�ned on the variety. The impor-
tant part of the theory is to be able to consider p-adic weights ; they can be de�ned on the ordinary
locus using the Igusa tower. To de�ne them on a strict neighborhood is a more involved question.
If one considers Shimura vareties with non-empty ordinary locus, one can try to generalize this
de�nition. An important result about overconvergent modular form is a classicality result : an over-
convergent modular form, which is an eigenvector for some Hecke operators is classical, provided
that the valuation of the eigenvalue is small enough.

As was seen in the previous sections, some Shimura varieties have an empty oridnary locus, and one
might think that the theory of overconvergent modular forms should fail in this situation. However,
one can consider instead the µ-ordinary locus, which is dense in the special �ber.

Let us consider an unitary Shimura variety.

5.1 The unrami�ed case

In this section, assume that the CM �eld F is unrami�ed at p. We can then consider the scheme
Ynaive de�ned in the previous section. Let Y be the rigid analytic space associated to it ; one has
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an admissible open subset Yµ−ord de�ned by the µ-ordinary locus. To de�ne this locus, one can use
a lift of the µ-ordinary Hasse invariant.
Alternatively, one can work at the Iwahori level. Recall that π is a place of F above p ; one can
then consider the p-divisible group A[π∞] on the variety. For each embedding τ above π, let dτ be
the dimension of ωτ , the τ -part of the sheaf of di�erentials of the above p-divisible group. We write
d1 < · · · < dr these integers.

De�nition 5.1.1. Let Ynaive,Iw be the scheme over Ynaive parametrizing subgroups H1 ⊆ · · · ⊂
Hr ⊆ A[π], where Hi is a �nite �at subgroup of height di, stable by OF .

In case (AU) one requires moreover that the chain of subgroups is stable under duality.
Let YIw be the associated rigid space. We de�ne Ymult

Iw as the locus where the subgroups Hi have
maximal degree, i.e. degHi =

∑
τ∈T min(di, dτ ).

Proposition 5.1.2 ([Bi3] Prop. 1.34). The natural projection YIw → Y induces a bijection between
Ymult
Iw and Yµ−ord.

This observation leads to the following de�nition of overconvergent modular forms (of classical
weight) in this context.

De�nition 5.1.3. Let κ be a classical weight, and let ωκ be the associated vector bundle. The set
of overconvergent modular forms of weight κ is

colimH0(V, ωκ)

where V runs through the strict neighborhoods of Ymult
Iw in YIw.

One has the following Hecke operators.

De�nition 5.1.4. Let Uπ,i be the Hecke operator obtained by classifying subgroups L ⊂ A[π] such
that A[π] = Hi ⊕ L in case (AL).
Let Uπ,i be the Hecke operator obtained by classifying subgroups L ⊂ A[π2] such that A[π] = Hi ⊕
L[π] = H⊥

i ⊕ πL in case (AU).

The Hecke operators are de�ned on the geometric �bers of Ynaive,Iw, and preserve the integral
structure. They then act on the modular forms on YIw, and on the overconvergent modular forms.
We refer to [Bi3] section 2.3 for more details.
One has the following classicality result.

Theorem 5.1.5 ([Bi3] Th. 3.17). Let f be an overconvergent modular form of wight κ, which is
an eigenform for the Hecke operators Uπ,i with eigenvalue αi. If the valuations of the αi are small
enough, then f is a classical modular form.

5.2 Towards a de�nition in the general case

Many obstacles must be overcome to develop a theory of overconvergent modular forms in the
rami�ed setting. We present here a possible approach.
Let us now allow rami�cation in F . For simplicity, assume that p = πe

0 is totally rami�ed in F0,
with rami�cation index e, and that π0 splits as π0 = ππ′ in F (we are then in the (AL) case). In
section 4.1.1 , one has introduced the spaces YPR and studied their geometry. One also has de�ned
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the notion of a canonical �ltration for p-divisible groups in this setting in section 3.3.
As in the previous section, one considers the p-divisible group A[π∞] ; it satis�es a PR datum for
the integers (dσ)σ∈Σ. Let us order these elements d1 ≤ · · · ≤ de these integers.
One can consider the following Iwahori variety.

De�nition 5.2.1. Let YPR,Iw be the scheme over YPR parametrizing subgroups H1 ⊆ · · · ⊂ He ⊆
A[πe], where Hi/Hi−1 is a �nite �at subgroup of height di inside (A/Hi−1)[π] .

Let YIw be the associated rigid space. We de�ne Ymult
Iw where the subgroups Hi have maximal

degree, i.e. deg(Hi/Hi−1) =
1
e

∑e
j=1 min(di, dj) for 1 ≤ i ≤ e.

Conjecture 5.2.2. The natural projection YIw → Y induces a bijection between Ymult
Iw and Yµ−ord,

the µ-ordinary locus of the rigid space associated to YPR.

This observation leads to the following de�nition of overconvergent modular forms (of classical
weight) in this context.

De�nition 5.2.3. Let κ be a classical weight, and let ωκ be the associated vector bundle. The set
of overconvergent modular forms of weight κ is

colimH0(V, ωκ)

where V runs through the strict neighborhoods of Ymult
Iw in YIw.

Regarding the Hecke operators, it might be simpler to consider only one operator, which would
correspond to the product of the Hecke operators in the previous section.

De�nition 5.2.4. Let U be the Hecke operator obtained by classifying subgroups L1 ⊆ · · · ⊆ Le ⊂
A[πe] such that (A/Li−1)[π] = (Hi + Li−1)/Li−1 ⊕ Li/Li−1.

The Hecke operators are de�ned on the geometric �bers of YPR,Iw, and preserve the integral
structure. They then act on the modular forms on YIw, and on the overconvergent modular forms.
One has the following classicality conjecture.

Conjecture 5.2.5. Let f be an overconvergent modular form of wight κ, which is an eigenform
for the Hecke operators Uπ,i with eigenvalue αi. If the valuations of the αi are small enough, then
f is a classical modular form.
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