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1. Introduction

Shimura varieties have been at the heart of arithmetic since their introduction by Goro
Shimura, later generalized by Pierre Deligne [Del71]. Nowadays they are a powerful geometric
tool for the Langlands program. As algebraic varieties over a number field E, their étale co-
homology is endowed both with an action of GE = Gal(E/E) and of the adelic points of the
underlying reductive group G : understanding the relations between the two actions is the way
to realize geometrically (cases of) the association of Galois representations to automorphic rep-
resentations. This strategy was first realized by Eichler-Shimura and Deligne for the modular
curves, and was later generalised in broader directions, for higher dimensional Shimura varieties
([LRZ92], [Kot92], [HT01], [Shi11],[CHLN11]...) where the previous arithmetic and analytic
relations has revealed very complex issues.

One of the ideas to realize this correspondance is the Langlands-Kottwitz method, for which we
need to relate the number of points (modulo p) of our Shimura variety (itself related to the étale
cohomology of the variety), to some orbital integrals of G, itself related in a somewhat indirect
way, but now classical, to automorphic representations. Thus, to make sense of the number of
points, we need to find a way to reduce the given Shimura variety modulo p, i.e. we need to find
a good integral model of it. When the Shimura Variety is of P.E.L. type, meaning more or less
that it is a moduli space of abelian varieties with some extra structure, the simplest idea is to
extend this modular description from E to OE , or at least to OEp

, a p-adic completion of OE . In
the first case of the modular curve, this has been extensively studied, for example in [DR73] or
[KM85], in which very satisfying integral models are introduced, for all the interesting levels at
p, for example Γ0(pn),Γ1(pn),Γ(pn)-levels. A remark regarding the definition of integral models
is that the level away from p is easy to deal with. Also, by satisfying integral models here we
mean with as little singularities as possible. For example when the level at p is maximal, the
integral model of the modular curves is smooth, and in general level they are regular. Kottwitz
then deeply generalised this in the case of P.E.L Shimura varieties, provided that the Shimura
datum was unramified at p, meaning that both the group is unramified at p (and has a suitable
integral model), and the level is hyperspecial at p.

The problem of defining good integral models both with deeper level at p, or for ramified
Shimura datum, has since been extensively studied. For a selection we mention the work of Harris-
Taylor [HT01] which study specific Shimura varieties for which the method of Katz-Mazur still
applies for deeper level, work of Pappas-Rapoport [PR05] for cases where the Shimura datum is
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ramified, and almost any paper of Lan (for example [Lan13, Lan16, Lan18]) for generalisation
in both directions. In this article we study a specific class of P.E.L. integral models, with
"maximal" level at p (in a specific sense), and for which the group is ramified at p. We take the
definition given in [PR05], also referred to as splitting models in the literature, and study the
local and global geometry of these models. Our results depend on the ramification of p on the
Shimura datum. Precisely, as explained in section 2.5, there is a finite set P of "primes" π above
p. These primes fall in one of the following categories : (C),(AL),(AU),(AR), where the first one
is the category of primes of symplectic type, and the last three are of unitary type, the last one
being ramified ; we exclude all type D factors in our P.E.L. Shimura varieties, see Hypothesis 2.2.
The last category (AR) roughly corresponds to a unitary group over a CM extension F/F+, and
a prime π above p in F+ such that π ramifies in F . Denote by X the Pappas-Rapoport model at
p of a Shimura variety as in section 2. It lives over the ring of integers of K, a finite, well chosen,
extension of Qp. Our first result is the following (see Theorem 2.30)

Theorem 1.1. — If no prime in P falls in case (AR), then X is smooth over Spec(OK).

Such a result was clearly expected in [PR05], and was already proven in the case of the
Hilbert modular varieties in [Sas19],[RX17]. Our proof is very similar, using the definitions of
[PR05] and the local study we make in section 2. Also it is clear that the assumption that no
prime falls in case (AR) is necessary, as explained in the Appendix.

The main result of this article is a study of the special fiber Xκ of X. Recalling that for a
(P.E.L.) Shimura variety S associated with data unramified at p, we can look at the Newton
stratification of the special fiber of S, which we now know has all the expected properties, in
particular their µ-ordinary locus is open and dense ([Wed99, Ham13]). In this article we study
a similar question in our situation, and we investigate another natural stratification, that we
call the Hodge stratification on Xκ, encoding the position of the Hodge polygon (defined in
[BH17]). Even if we show that this stratification doesn’t behave as well as expected (except in
case of very small ramification – e = 2 – and even only away from case (AR)), we prove that the
open stratum, the generalised Rapoport locus, is dense (except in case (AR), again). This locus
coincides with the usual Rapoport locus in the Hilbert case, hence the denomination.

Theorem 1.2. — If no prime in P falls in case (AR), the generalised Rapoport locus is open
and dense.

We actually prove this result by hand by explicitely constructing a deformation of a p-divisible
group to the generalised Rapoport locus, see Theorem 3.3. Then we investigate the similar
result for the Newton stratification. Because of our earlier results on Pappas-Rapoport data (see
[BH17]), we know that the µ-ordinary locus, which coïncides with the (big) open stratum of
the Newton stratification, lies inside the generalised Rapoport locus. Here, we prove that it is
dense, generalising work of Wedhorn ([Wed99]) in the case of a ramified Shimura variety.

Theorem 1.3. — If no prime in P falls in case (AR), the µ-ordinary locus in Xκ is open and
dense.

This result actually implies the previous one, but the proof uses the density of the generalised
Rapoport locus, together with the methods of deformation of p-divisible groups introduced in
[Wed99], and relies on calculations on displays. Here we slightly simplify some arguments of
[Wed99], constructing "by hand" deformations when we can. This density result extends the
work of [Wed99] (which deals with the unramified case). Note also the work of Wortmann
([Wor13]) for Hodge-Type Shimura varieties with good reduction at p and work of He-Rapoport
([HR17]) and He-Nie ([HN17]) to compare the µ-ordinary locus to EKOR strata and to refor-
mulate this density in terms of Weyl groups.
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Finally, we give an equivalent condition, similar to the unramified case, for the existence of an
ordinary locus. Namely, we prove that the ordinary locus is non empty if and only if the prime
p is totally split in the reflex field, extending the result in [Wed99] in the unramified case.

We would like to thank F. Andreatta and E. Goren for an interesting discussion and suggesting
to have a look at [Kra03], P. Hamacher, M. Rapoport, T. Richarz for interesting discussions
about this article and related works. We would also like to thank the referee for the very careful
reading of this paper which helped clarify and simplify the exposition. Both authors have been
supported by the project ANR-19-CE40-0015 COLOSS.

2. Shimura datum, Pappas-Rapoport condition and stratifications

2.1. Shimura Datum. — Let (B, ?) be a finite dimensional central semisimple Q-algebra
endowed with a positive involution, with center F , and (V,< ., . >) be a non-degenerate skew
hermitian B-module, and let G be the algebraic group over Q of (similitude)-automorphisms of
(V,< ., . >), i.e. representing the functor,

G(R) = {(g, c) ∈ GL(V ⊗Q R)×Gm(R)| < gz, gz′ >= c < z, z′ >,∀z ∈ V ⊗Q R},

on Q-algebras R.
Let h : C −→ EndB(VR) be a R-algebra homomorphism such that h(z) = h(z)? and the

bilinear form (·, h(i)·) on VR is positive definite. This induces a Shimura datum (G, h).

2.2. Characteristic zero moduli space. — Let us denote by E the reflex field of the
(Shimura) datum (G, h); it is a number field. Fix K ⊂ G(Af ) a neat (for simplicity) compact
open subgroup.

Following [Lan13] Definition 1.4.2.1, let SK be the moduli problem over Spec(E) that asso-
ciate to S the quasi-isogeny classes of quadruples (A, λ, ι, η), where A −→ S is a abelian scheme,
λ is a Q×-polarisation of A, ι : B −→ End(A)⊗ (Q)S is a morphism compatible with ? and the
Rosati involution, and η is a rational level structure of typeK of A (see [Lan13] Definition 1.4.1.2
for a precise formulation). We moreover require that this quadruple satisfies the determinant
condition, see [Kot92] section 5 or [Lan13] definition 1.3.4.1.

Then SK is representable by a scheme over Spec(E). This is, for example, [Lan13] Corollary
1.4.3.7 and Corollary 7.2.3.10.

Remark 2.1. — If p is a good prime for G,K, we could give an analogous definition by Z(p)-
isogeny instead of quasi-isogeny (i.e. Q×-isogeny), as we will do later in the text, but we would
need to introduce integral data to give a meaning to good primes (see our definition in section
2.4, and [Lan13] sections 1.4.2, 1.4.3).

From now on, we fix a prime p. Let us be more specific about the determinant condition when
S is over Qp. First let us assume that the following hypothesis on p and B is satisfied.

Hypothesis 2.2. — We assume that BQp is isomorphic to a product of matrix algebras over
finite extensions of Qp, such that factors are either stable by ? or exchanged two-by-two by ?.
Up to isomorphism, the possibilities for each simple involutive factor Bi of BQp are then (see e.g.
[?] Proposition 8.3)

(D) : Bi = Mn(L) with ?(A) = J tAJ−1 with J skew-symmetric.
(C) : Bi = Mn(L) with ?(A) = M tAM−1 with M symmetric.
(AL) : Bi = Mn(L)×Mn(L) and ?(A,B) = (B,A).
(AU) or (AR) : Bi = Mn(L), ?(A) = M tAM−1, with ? inducing an order 2 automorphism

(·) of L.
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In the first two cases the involution is said to be of the first kind (resp. of the second kind in the
last two cases), i.e. ? induces the identity (resp. an order two automorphism) of L. In the last
two cases, if we denote L+ the subfield fixed by ?, then we are in case (AL) if L = L+ × L+,
and we say we are in case (AU) when L/L+ is unramified, and in case (AR) if L/L+ is ramified.
We assume moreover in this article that each simple involutive factor is of type (C), (AL), (AU)
or (AR), i.e. we exclude factors of type (D). In particular we exclude all factors in our Shimura
datum of type (D) in the usual sense ([Kot92] section 5, [Lan13] Definition 1.2.1.15).

Example 2.3. — If B = F , with F/F+ a CM field with totally real field F+, and ? the complex
conjugation, the previous hypothesis is satisfied as BQp =

∏
π|p F ⊗F+ F+

π where π ranges over
places over p in OF+ and F+

π is the π-adic completion of F+.

By hypothesis, we can decompose BQp =
⊕r

i=1Mni(Fi) where Fi/Qp is a finite, possibly
ramified, extension. Remark that the involution ? on B acts on the set {1, . . . , r}, we denote
s(i) the image of i by this involution. Denote by Eν a p-adic completion of E, thus Eν is a finite
extension of Qp. If (A, λ, ι, η) is an object over S in SK ⊗E Eν , then ωA = Lie(A)∨ is a OS ⊗QB
module, but as S is over Qp, it is a OS ⊗Qp BQp -module, and we can thus decompose it as

ωA =

r⊕
i=1

ωA,i,

where ωA,i is aOS⊗QpMni(Fi)-module. Using Morita equivalence, decompose ωA,i = OniS ⊗OSωi,
where ωi = eiωA,i is endowed with an action of OFi , and ei is the Morita projector associated
to the matrix E1,1 seen as an element of Mni(Fi). Up to an extension of scalars for S, we can
further decompose ωi =

⊕
τ∈T ′i

ωi,τ , as locally free OS-modules, where T ′i = Hom(Fi,Cp). Then
the determinant condition is equivalent to asking the locally free (ωi,τ ′) to have fixed dimension
(di,τ ′)i,τ ′ , where the integers (di,τ ′)i,τ ′ are fixed by h as follows. Denote VC = V1 ⊕ V2 the
decomposition where h(z) acts as z (resp. z) on V1 (resp. V2). Then the reflex field E ⊂ C is
the number field where the isomorphism class of the complex B-representation V1 is defined. It
thus makes sense to consider VQp = V1,Qp ⊕ V2,Qp as a BQp -representation. Using the hypothesis
on B, decompose,

V1,Qp =

r∏
i=1

V i1 ⊗Fi⊗QpQp
(Fi ⊗Qp Qp)ni ,

by Morita, where V i1 is a Fi ⊗Qp Qp-module that we can further decompose as,

V i1 =
∏

τ ′∈Hom(Fi,Qp)

(V i1 )τ ′ .

Then di,τ ′ is the dimension of (V i1 )τ ′ .

Remark 2.4. — As our Shimura datum comes from an object over Q, we can check that, for
all i, and for all τ ′, τ ′′, we have

di,τ ′′ + ds(i,τ ′′) = di,τ ′ + ds(i,τ ′) = hi,

is independent of τ ′, where s is the action induced by ? (in the case where two factors i, j are
exchanged by ?, recall that we set j = s(i)). This is for example [Lan13], end of page 59.

2.3. Pappas-Rapoport data. — The goal of this section is to define a Pappas-Rapoport
datum in order to define an integral model for the variety SK which is analogous to Kottwitz de-
terminantial condition but better behaved in ramified characteristics. Such a datum, introduced
in [PR05], is refereed there as a splitting datum. We define such a datum in this section, and
explain its behavior with duality.
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2.3.1. Definition. — Let L/Qp be a finite extension, K be an extension of Qp containing the
Galois closure of L, and S is an OK-scheme. Denote Lur the maximal unramified subfield of L,
and T = Hom(Lur,Cp) the set of unramified embeddings, and fix π a uniformiser of L, with
Eisenstein polynomial Q. In particular we can identify, sending T to π,

OLur [T ]/(Q(T )) ' OF .

Let us fix an embedding τ of Lur into K, and define Σ as the set of embeddings of L into K
extending τ . It is a set of cardiality e, and let us choose an ordering Σ = {σ1, . . . , σe} for this
set.

Let N → S be a locally free sheaf with an action OL, such that OLur acts on N by τ . We
will denote by [π] the action of π on N . Let (d1, . . . , de) be a collection of integers. We recall
the definition of a Pappas-Rapoport datum.

Definition 2.5. — A Pappas-Rapoport datum for N with respect to the collection
(σi, di)i=1,...,e consists in a filtration

0 = N [0] ⊂ N [1] ⊂ · · · ⊂ N [e] = N

such that
1. The N [j] are OS-locally direct factors stable by OL.
2. ([π]− σj(π)) · N [j] ⊂ N [j−1], for all 1 ≤ j ≤ e.
3. N [j]/N [j−1] is locally free of rank dj for all 1 ≤ j ≤ e.

2.3.2. Duality. — Next, we want to explain the compatibility with duality for this datum.
Assume that there exists a sheaf E , locally free of rank h as a OS ⊗OFur ,τ OF -module, such that
N is locally a direct factor of E . LetM := (E/N )∨ ; it is a locally free sheaf over S, and has an
action of OL (with OLur acting by τ). One thus has an exact sequence

0→ N → E →M∨ → 0

Let us introduce some more notation. Define πi := σi(π) for 1 ≤ i ≤ e, and let us introduce
the polynomials for 1 ≤ ` ≤ e

Q` :=
∏̀
i=1

(T − πi) and Q` :=

e∏
i=`+1

(T − πi).

Note that the hypothesis made on E means that it is locally free as a OS [T ]/Q(T )-module (with
T acting by π).

Definition 2.6. — Let us define a complete filtration on E

0 = N [0] ⊂ N [1] ⊂ · · · ⊂ N [e] = N ⊂ N [e+1] ⊂ · · · ⊂ N [2e] = E

by the formulas

N [2e−`] =
(
Q`(π)

)−1
(N [`]).

for every 1 ≤ ` ≤ e− 1.
A full Pappas-Rapoport datum for (E ,N ) with respect to (σi, di)i=1,...,e is a complete filtration
of the previous form, where (N [i])i=1,...,e is a Pappas-Rapoport datum for N with respect to the
same data.

The conditions imposed by the Pappas-Rapoport datum imply that the inclusions N [e+j] ⊂
N [e+j+1] are satisfied for every 0 ≤ j ≤ e− 1.
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Lemma 2.7. — Let 1 ≤ j ≤ e− 1 be an integer. The sheaf N [e+j] is locally free of rank

jh+ d1 + · · ·+ de−j = dimOS N + h− de + · · ·+ h− de−j+1.

Moreover, one has
([π]− σe−j+1(π))N [e+j] ⊂ N [e+j−1].

Proof. — This is an easy computation.

One deduces from this lemma that one has a Pappas-Rapoport datum forM.

Proposition 2.8. — The complete filtration on E induces a Pappas-Rapoport datum for M
with respect to the collection ((σ1, . . . , σe), (h− d1, . . . , h− de)).

Remark 2.9. — In special fiber, the situation is quite simpler. Indeed, one has simply Q`(π) =
π`, Q`(π) = πe−` and

N [2e−`] =
(
πe−`

)−1
(N [`])

for every 1 ≤ ` ≤ e− 1.

2.3.3. Pairing. — Assume in this section that the sheaf E has a perfect alternating pairing
<,>: E × E → OS . Assume also that this pairing is compatible with the action of OL, i.e. that
< a · x, y >=< x, a · y > for a ∈ OF and x, y ∈ E . This forces the integer h to be even; let
g be such that h = 2g. Assume moreover that N is maximally isotropic, i.e. N = N⊥, the
latter notation refering to the orthogonal of N for the considered pairing. This implies that N
is locally free of rank eg.

Proposition 2.10. — Fix a Pappas-Rapoport datum for N with respect to the collection
(σi, di)i=1,...,e. There exists a complete filtration of E given by

0 = N [0] ⊂ N [1] ⊂ · · · ⊂ N [e] = N ⊂ N [e−1]⊥ ⊂ · · · ⊂ N [1]⊥ ⊂ E
This filtration induces a Pappas-Rapoport datum for M with respect to the collection
((σ1, . . . , σe), (d1, . . . , de)).

Proof. — Let us consider the sheaf N [e−1]⊥. It is locally a direct factor of rank 2eg− (d1 + · · ·+
de−1) = eg+de since d1+· · ·+de = eg. Let x ∈ N [e−1]⊥ and y ∈ N . Then [π]y−σe(π)y ∈ N [e−1],
and thus

0 =< x, [π]y − σe(π)y >=< [π]x− σe(π)x, y >

One then gets that [π]x− σe(π)x ∈ N⊥ = N . The results for the other sheaves are similar.

One would of course want that this filtration coincides with the previous one. This is possible
only if di = g for all 1 ≤ i ≤ e, which we will assume in the rest of the section.

Definition 2.11. — One says that the filtration N [•] is compatible with the pairing if

N [2e−`] = N [`]⊥

for all 1 ≤ ` ≤ e− 1.

Let us be a little more explicit about the above condition. If R is a polynomial, we denote by
E [R] the kernel of R(π) acting on E . One sees in particular that N [`] ⊂ E [Q`] for 1 ≤ ` ≤ e.

Proposition 2.12. — One has for 1 ≤ ` ≤ e
E [Q`]

⊥ = E [Q`]

Proof. — Note that one has E [Q`] = Q`(π)E . The fact that x belongs to E [Q`]
⊥ is thus equivalent

to the fact that < x,Q`(π)y >= 0 for all y ∈ E . This is equivalent to the relation Q`(π)x = 0.
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Since the multiplication by Q`(π) induces an isomorphism E/E [Q`] ' E [Q`], one has an
induced perfect pairing

h` : E [Q`]× E [Q`]→ OS
Explicitly, since E [Q`] = Q`(π)E , one has

h`(Q`(π)x,Q`(π)y) =< x,Q`(π)y >=< Q`(π)x, y >

Corollary 2.13. — The filtration N [•] is compatible with the pairing if and only if N [`] is
totally isotropic in E [Q`] for the pairing h`, for every 1 ≤ ` ≤ e.

Proof. — To say that the filtration is compatible with the pairing amounts to say that for every
1 ≤ ` ≤ e, one has N [`]⊥ = (Q`(π))−1N [`]. Since the orthogonal of N [`] for h` is Q`(π)N [`]⊥,
the result follows.

Remark 2.14. — In special fiber, the situation is again quite simpler. In this case, one has
simply E [Q`] = E [π`] = πe−`E . The pairing h` on this sheaf is given by

h`(π
e−`x, πe−`y) =< πe−`x, y >=< x, πe−`y >

If F ⊂ E [π`] is totally maximally isotropic for h`, then its orthogonal in E is equal to

F⊥ = (πe−`)−1F .

2.3.4. Application to p-divisible groups. — Let G −→ S be a p-divisible group of height h[L :
Qp], endowed with an OL-action. Thus, we can decompose ωG, a locally free OS-module into

ωG =
⊕
τ∈T

ωG,τ .

Assume that ωG,τ is locally free of rank pτ , and suppose given for all τ integers

d1
τ , . . . , d

e
τ ,

such that diτ ≤ h for all τ, i, and d1
τ + · · · + deτ = pτ for all τ . Denote f = [Lur : Qp], so that

ht(G) = efh. Define H := H(G) := H1
dR(G/S) := D(G)S−→S the evaluation of the crystal of G

([BBM82]) on S. This is a locally free OS ⊗Zp OL-module of rank h, which moreover splits as

H =
⊕
τ∈T
Hτ ,

and for each piece, there is an exact sequence given by the Hodge filtration,

0 −→ ωG,τ −→ Hτ −→ ω∨GD,τ −→ 0.

Definition 2.15. — A Pappas-Rapoport datum for G, with respect to L, (στ,j), (djτ )τ∈T ,j , is
the datum of, for all τ , of a full Pappas-Rapoport datum for (Hτ , ωG,τ ); i.e. a filtration by locally
direct OS-factors

0 = ω
[0]
G,τ ⊂ ω

[1]
G,τ ⊂ · · · ⊂ ω

[e−1]
G,τ ⊂ ω

[e]
G,τ = ωG,τ ⊂ ω[e+1]

G,τ ⊂ · · · ⊂ ω
[2e−1]
G,τ ⊂ ω[2e]

G,τ = Hτ ,

satisfying

1. For j = 1, . . . , e, dimOS (ω
[j]
G,τ/ω

[j−1]
G,τ ) = djτ ,

2. For j = 1, . . . , e dimOS ω
[e+j]
G,τ /ω

[e+j−1]
G,τ = h− de−j+1

τ

3. For j = 1, . . . , e, ([π]− στ,j(π)(ω
[j]
G,τ ) ⊂ ω[j−1]

G,τ ,

4. For j = 1, . . . , e, ([π]− στ,e(π)) . . . ([π]− στ,e+j−1(π))ω
[e+j]
G,τ ⊂ ω

[e−j]
G,τ .

5. For j = 1, . . . , e, ω[e+j]
G,τ = (Qe−j(π))−1ω

[e−j]
G,τ .
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Definition 2.16. — Let H be a locally free R-module (of finite rank), R a ring, and denote

H ⊗H∨ −→ R,

the perfect pairing between H and H∨ = HomR(H,R). Let W ⊂ H be a locally direct factor.
The association

W 7−→W⊥ := Ker(H∨ �W∨),

is an inclusion reversing involution between locally direct factors of H and H∨.

Thus by proposition 2.8 we have

Proposition 2.17. — Let (ω
[i]
G,τ )i=0,...,2e be a full Pappas-Rapoport datum for G, with respect

to L, (στ,j)(τ,j), (d
j
τ )(τ,j). Then ((ω

[2e−i]
G,τ )⊥)i=0,...,2e induces a full Pappas-Rapoport datum for

GD, with respect to L, (στ,j)τ,j , (h−djτ )(τ,j). Here (.)⊥ denotes the previous involution under the
identification H(GD) = H(G)∨ (which satisfies ω⊥G = ωGD).

Definition 2.18. — Suppose we are given a ring extension L/L+ of degree ≤ 2, such that L
is a field or isomorphic to L+×L+, and let s ∈ Gal(L/L+). Suppose we are given a polarisation
λ : G

∼−→ (GD)(s). Then we say that a Pappas-Rapoport datum R for G is compatible with λ, if
under the isomorphism λ : H(G)

∼−→ H(GD)(s), the datum R and (R⊥)(s) (given by Proposition
2.17 and twist by s) coïncides. In particular, this implies that

dτ,i(R) = h− ds(τ),i(R).

Remark 2.19. — In the situation when primes ramifies further in L/L+, the previous com-
patibility is unfortunately impossible to achieve (except possibly in reduced special fiber). For
example let L+ = Qp and L = Qp[T ]/(E(T )) a quadratic extension in which (p) = (π)2 ramifies.
Denote by c(π) = π the conjugate uniformizer. Thus a Pappas-Rapoport datum for G/S, L,
(π, π) and d ≤ h, is the datum of

0 ⊂ ω[1] ⊂ ωG ⊂ F [1] ⊂ H,
such that F [1] = (T − π)−1ω[1]. The associated datum of (GD)(s) is

0 ⊂ (F [1])⊥,s ⊂ ω(s)

GD
⊂ (ω[1])⊥,(s) ⊂ H∨,(s).

But as T acts on H/F [1] as π, and thus on (F [1])⊥,s as π. Moreover (F [1])⊥,c is of rank h− d1

when ω[1] is of rank d1. There is thus no chance that given an isomorphism

λ : G
∼−→ GD,(s),

our Pappas-Rapoport datum is λ-compatible (except if π = π on S, for example in special fiber,
and 2d1 = h). We will refer to this as the case (AR) in the rest of the text.

2.4. Pappas-Rapoport models. — Let OB be a Z(p)-order in B, preserved by ?, such that its
completion is a maximal Zp-order in B⊗QQp, and (Λ, < ., . >) be a PEL OB-lattice (see [Lan13]
Definition 1.2.1.3) such that (Λ, < ., . >)⊗Z Q = (V,< ., . >). Assume moreover Hypothesis 2.2,
that is to say BQp is isomorphic to a product of matrix algebras over (necessarily finite) extensions
of Qp. Note that we do not assume that the extensions are unramified. Now assume that p is
a good prime, in the sense that p - [Λ] : Λ], where Λ] = {x ∈ V | < x, y >∈ Z,∀y ∈ Λ}.(1) This
assumption will remain in force during all this article.

(1)this is less strong than Lan’s definition [Lan13], 1.4.1.1 of a good prime, as we actually want to define a moduli
problem for primes ramified in O, but we, as Lan, assume that p does not contribute to the level (implicitly as
our level will be maximal at p), and exclude factors of type D.
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Let K be an extension of Eν (with E the relfex field) which contains F gali for all i. We will
want to consider a moduli problem X over OK of associating to S quintuples (A, λ, ι, η, ω[·]) up
to Z×(p)-isogenies, where ω

[·] will be a Pappas-Rapoport datum with respect to a combinatorial
data C which we now explain.

First, suppose given a abelian scheme A over S (itself over OK) endowed with an action
ι : OB −→ End(A) ⊗Z (Z(p))S . Decompose ωA as before so we get a collection (ωi)i=1,...,r, and
now the action of OFuri on ωi can be splitted (as S is over OK) as,

ωi =
⊕
τ∈Ti

ωi,τ ,

where Ti = Hom(Furi ,Cp). Unfortunately if Fi is ramified, we can’t further decompose the ωi,τ
as we did over Qp.

Denote by Σi,τ the subset of T ′i := Hom(Fi,Cp) of embedding τ ′ that induces τ when restricted
to Furi . Let us denote, for all i ∈ {1, . . . , r}, πi a chosen uniformiser of Fi/Furi , Qi a corresponding
Eisenstein polynomial, and let us choose an ordering Σi,τ = {σi,τ,1, . . . , σi,τ,ei} for the elements
of Σi,τ , for all i, τ , where ei = [Fi : Furi ], (it corresponds to an ordering of the conjugate roots of
τ(Qi)). This induces a bijection

{1, . . . , ei}
σ•−→ Σi,τ

j 7−→ σi,τ,j
,

and a numbering (di,τ,j)j=1,...,ei such that {di,τ,j : j = 1, . . . , ei} = {di,τ ′ : τ ′ ∈ Σi,τ}, by setting

di,τ,j = di,σi,τ,j ,

where di,σi,τ,j is defined in section 2.2. We assume moreover, to reflect remark 2.4, that the
choice of these bijections implies that, for all i, τ, j,

di,τ,j = hi − ds(i,τ),j ,

where as before s is the action induced by ?, the involution on B, on
∏
i Hom(Fi,Cp). To ease

the notation, we will write
C = ((σi,τ,j)i,τ,j , (di,τ,j)i,τ,j)

and Ci = ((σi,τ,j)τ,j , (di,τ,j)τ,j) for every i. One will also write CD = ((σi,τ,j ◦ s)i,τ,j , (hi −
di,τ,j)i,τ,j) and CDi = ((σi,τ,j ◦ s)τ,j , hi − (di,τ,j)τ,j). We can moreover, if we denote H =
H1
dR(A/S), decompose

H =
⊕
i

Hi,

with Hi aMni(OFi)-module, corresponding by Morita equivalence to eiHi, which we can further
decompose

eiHi =
⊕

τ :Furi −→Qp

Hi,τ .

Remark that if S is actually over Qp, then,

ωi,τ =
⊕

τ ′∈Σi,τ

ωi,τ ′ ,

and using the previous decomposition for ω, we get ω[·]
i,τ a filtration of ωi, by,

ω
[j]
i,τ =

j⊕
r=1

ωi,σi,τ,r .
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Example 2.20. — As explained in [Kot92], when C is a semi-simple algebra over a field
(say of characteristic p), then a C-module V is determined by its determinant detV associ-
ated by Kottwitz. Unfortunately in the ramified case OB ⊗ Fp is no longer semi-simple and
the determinant fails to determine V . For example say BQp = L a totally ramified extension
of Qp of degree e, and thus OB ⊗ Fp = Fp[X]/(Xe). Let V = Fp[X]/(Xe) and W = Fep.
Then detV (T1, . . . , Te) = detW (T1, . . . , Te) = T e1 but obviously V and W are not isomorphic as
Fp[X]/(Xe)-modules.

Now assume that λ is a Z×p -polarisation on A, and that ι is a OB structure for (A, λ) (i.e. satis-
fies the Rosati Condition, cf [Lan13] Definition 1.3.3.1). Using this λ we deduce an isomorphism
for all indices i

eiHi ' es(i)H∨s(i),
coming from an isomorphism of the associated p-divisible group when decomposing A[p∞], and
we can thus apply the Definition 2.18 for Fi/F+

i = F ?=1
i (when s(i) = i) or Fi × Fs(i) when

i 6= s(i). As suggested in Remark 2.19, we say that an index i falls in case (AR) if Fi is stable
by ? and the extension Fi/F ?=1

i is ramified. This notation will be explained in more details in
section 2.5

Definition 2.21 ([PR05] Sections 14 and 9). — Let S be a OK-scheme. A Pappas-
Rapoport datum for (A, λ, ι)/S, with respect to C is the datum, for every (i, τ), of

– if i does not fall in case AR, a full Pappas-Rapoport datum for (Hi,τ , ωi,τ ) associated to
Ci, as in definition 2.15, that is moreover λ-compatible with CDs(i) (see definition 2.18),

– if i falls in case AR, we ask for a full Pappas-Rapoport datum R for (Hi,τ , ωi,τ ) with
respect to Ci, (this automatically induces a full Pappas-Rapoport datum R⊥,(s) for
(HD,si,τ , ω

(s)

AD,i,τ)
) = (Hi,τ , ωA,i,τ)) with respect to CDi ).

As explained in Remark 2.19, we cannot ask for λ-compatibility in case (AR). Unfortunately
in this situation the moduli space will not be studied in much details in this article, but we will
show that our two main theorems fail in this (AR) case.

Consider the moduli problem X over OK , associating to S quintuples (A, λ, ι, η, ω[·]) up to
Z×(p)-isogenies, where

– A −→ S is an abelian scheme,
– λ : A −→ tA is a Z×(p)-polarisation,
– ι : OB −→ End(A) ⊗Z (Z(p))S is a OB-structure of (A, λ) (in particular ? induces the

Rosati involution)
– η is a rational level structure outside p (see [Lan13] section 1.4.1)
– ω[·] is a Pappas-Rapoport datum for C, which is defined in Definition 2.21.

Proposition 2.22. — The moduli space X associating to each S over Spec(OK) the set of
isomorphism classes of quintuples (A, λ, i, η, ω[·]) is representable by a quasi-projective scheme.

Proof. — This is shown in a local context in [PR05] : the morphism who forgets the Pappas-
Rapoport datum is relatively representable over the (PEL) moduli space (Kottwitz’s model).
Thus X is representable, locally fibrered over Kottwitz’s model as a closed subset of a product
of Grassmanian (equivalently it is a closed subset of some partial flag variety for ωAuniv over
Kottwitz’s model).

Proposition 2.23. — Let Kp ⊂ G(Apf ) be a compact open subgroup as before (neat). Let
C ⊂ G(Qp) be the stabilizer of Λ, and consider the compact open CKp. Let us choose K a



ON THE GEOMETRY OF THE PAPPAS-RAPOPORT MODELS FOR PEL SHIMURA VARIETIES 11

p-adic completion of the Galois closure of the Fi as before. Then the Pappas-Rapoport model
X/ Spec(OK) coincides with SCKp over K, i.e. X is an integral model of SCKp over OK .

Proof. — Obviously if (A, i, λ, η) is a quadruple in SCKp(S), where S is over K, there is a
canonical filtration of ωA, as explained before, as we have fixed the bijections σ•. Moreover, each
quintuple (A, i, λ, η, ω[·]) satisfies the Kottwitz’s determinant condition as the filtration given
by ω[·] on ωi,τ is split, and the dimensions are fixed by the Pappas-Rapoport condition. The
equivalence beetwen definition by Z×(p)-isogeny classes and quasi-isogeny classes (in characteristic
0) is then [Lan13] Proposition 1.4.3.4.

From now on fix a level Kp ⊂ G(Apf ) outside p and C as before at p ("without level at p" or
rather maximal level at p), call X the Pappas-Rapoport model over OK of the Shimura variety
SCKp . It thus make sense to reduce X over κ, the residue field of K. The goal of this article is
to study the geometry of Xκ := X × Spec(κ).

2.5. Polygons. — As explained in the previous section, we can decompose the lie algebra ωA
of the universal abelian scheme A over X through the action of OB ⊗ Zp. Actually, we can also
decompose the p-divisible group A[p∞]. According to Hypothesis 2.2, we write,

OB ⊗ Zp =
∏
π∈P

Mnπ (Rπ),

where π ∈ P is a new indexation for i ∈ {1, . . . , r}, where the two factors i, s(i), exchanged by ?,
share the same index π, and, Rπ = OFπ if i = s(i), or Rπ = OFπ ×OFπ if there are two factors
(i.e. Rπ = OFi ×OFs(i) if π = [i] when i 6= s(i)). Thus P = {1, . . . , r}/∼s . We refer to the π ∈ P
as places over p in B. We can thus decompose,

A[p∞] =
∏
π∈P

A[π∞],

where A[π∞] is a Mnπ (Rπ)-module p-divisible, and by Morita equivalence,

A[π∞] = OnπRπ ⊗ORπ Gπ.

Note that because λ, the (universal) polarisation of A is compatible with ?, each factor A[π∞] is
still endowed with a polarisation λπ and thus also Gπ. We will use this decomposition of A[p∞]
all the time as, if we know the nπ, it is equivalent to know A[p∞] (and λ) or the collection (Gπ)π
(and the λπ).

For all π, Gπ is a polarized p-divisible group over X, the Pappas-Rapoport model, endowed
with an action of Rπ.

Moreover, if Rπ = OFπ × OFπ and ? exchanges the two factors, we can further decompose
Gπ = Hπ×HD

π and λπ exchanges the two factors. In this case, called (Split) or (AL), the datum
of (Gπ, λπ) is equivalent to Hπ.

Otherwise Gπ is a p-divisible OFπ -module with a polarisation λπ such that either,

– ? induces the identity on OFπ , which is equivalent for λπ to be compatible with the OFπ -
action, which we refer to as case (C).

– ? is an automorphism of order 2 of OFπ , and denote OF+
π

the subfield fixed by ?. If OFπ
is unramified over OF+

π
, we refer to this case as (Inert) or (AU), and if the extension is

ramified, as (Ram) or (AR). In this two cases Gπ satisfies the symmetry,

GDπ
λπ' G(c)

π ,
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where c is the order-two automorphism of Fπ induced by ?, and G(c)
π is the p-divisible OFπ -

module where the endomorphism structure is ι(c) := ι ◦ c if ι denotes the endomorphism
structure of Gπ.

Remark 2.24. — The previous denomination comes from the possible decompositions of the
p-divisible group of an abelian variety endowed with an action of the ring of integer of a totally
real field (C), or a CM-field F/F+ in which a place π of F+ splits in F (AL) where the underlying
group at p is a Linear group, is inert in F (AU) where the underlying group is an Unramified
unitary group, or is ramified in F (AR), which itself is related to the classification of Lie algebras,
symplectic (C) or unitary (A) (as we have excluded orthogonal factors (D)).

From now on, we will fix a element π ∈ P. For the rest of this subsection assume our base
scheme S is a field k over κ (thus of characteristic p). Let us be more explicit about the different
cases.

2.5.1. Case C. — In the case C, we will denote the p-divisible group Gπ simply by G, and Fπ
by L. The p-divisible group G has an action of OL, and a polarization. It has height 2dg and
dimension dg, where d is the degree of L over Qp. The sheaf ωG decomposes as

ωG =
⊕
τ∈T

ωτ

where T is the set of embeddings of Lur. Recall the Hodge filtration for G

0→ ωG → H1
dR → ω∨GD → 0,

where GD is the Cartier dual of G. This exact sequence splits according to the elements of T .
The PR condition for G is then as follows.
For each τ ∈ T , one has a filtration

ω[0]
τ = 0 ⊂ ω[1]

τ ⊂ · · · ⊂ ω[e]
τ = ωτ ,

where ω[i]
τ is locally a direct factor of rank gi. Moreover, one has the following compatibility

with the polarization:

ω[i]
τ

⊥
= (πe−i)−1ω[i]

τ

this equality being taken in H1
dR,τ for 1 ≤ i ≤ e (recall πi = 0 in S here).

For each τ ∈ T , one can define the polygon Hdgτ (G); it is defined thanks to ωτ as in [BH17]
Definition 1.1.7. It starts at (0, 0) and ends at (2g, g). Since G has a polarization, this polygon
is symmetric: its slopes are λ1, . . . , λg, 1− λg, . . . , 1− λ1. We define the polygon Hdg(G) as the
mean of the polygons Hdgτ (G).
The polygons PRτ and PR are all equal: the have slope 0 and 1, each of them with multiplicity
g.
We define the Newton polygon of G as in [BH17] Def. 1.1.8 , and denote it Newt(G); it is also
symmetric.

2.5.2. Case AL. — In this case, one has Gπ = Hπ×HD
π . We will consider the p-divisible group

G = Hπ. It is endowed with an action of OL but has no polarization. The sheaf ωG decomposes
as

ωG =
⊕
τ∈T

ωτ

Fix (aτ,j) ∈ ZT ×{1,...,e}, where e is the ramification index of L. Denote by aτ = dimωτ and
bτ = dimωGD,τ . Then h′ = aτ + bτ is independant of τ . In the global setting, (aτ,j) will coincide
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with the part of the integers di,τ,j corresponding to Hπ. The PR datum (for (aτ,j)) is then as
follows. For each τ ∈ T , one has a filtration

ω[0]
τ = 0 ⊂ ω[1]

τ ⊂ · · · ⊂ ω[e]
τ = ωτ

where ω[i]
τ is locally a direct factor of rank aτ,1 + · · ·+ aτ,i.

Note that this PR datum induces a PR datum for GD (see Definition 2.16). For each τ ∈ T ,
one can define the polygon Hdgτ (G); it is defined thanks to ωτ , see [BH17] Definition 1.1.7. It
starts at (0, 0) and ends at (aτ + bτ , aτ,1 + · · ·+ aτ,e) = (h′, aτ ). We define the polygon Hdg(G)
as the mean of the polygons Hdgτ (G).
The polygons PRτ is defined in [BH17] section 1. The polygon PR is the mean of the polygons
PRτ .
We define the Newton polygon of G using [BH17] def. 1.1.8, and denote it Newt(G). As we
have used Hπ instead of Hπ ×HD

π , these polygons do not need to be polarized (i.e. symmetric
in any sense).

2.5.3. Case AU. — In this case, we define G = Gπ, we denote Fπ by L and by L+ the subfield
of element fixed by ?, which we denote by . as a conjugation. It is endowed with an action of OL
but has also a polarization. The sheaf ωG decomposes as

ωG =
⊕
τ∈T ′

ωτ ⊕ ωτ

where T is the set of embedings of L and T ′ the embeddings of L modulo conjugation. We
define (aτ,j) ∈ ZT ×{1,...,e} as before, and aτ = dimωτ , bτ = dimωGD,τ = dimωτ = aτ , and
h′ = aτ + bτ . The PR condition is then as follows. For each τ ∈ T , one has a filtration

ω[0]
τ = 0 ⊂ ω[1]

τ ⊂ · · · ⊂ ω[e]
τ = ωτ

where ω[j]
τ is locally a direct factor of rank aτ,1 + · · ·+ aτ,j .

Note that this PR condition coincides with the induced PR condition for ωτ thanks to the
compatibility with the polarization. For each τ ∈ T , one can define the polygon Hdgτ (G); it is
defined using ωτ . It starts at (0, 0) and ends at (aτ + bτ , aτ,1 + · · ·+ aτ,e) = (h′, aτ ). We define
the polygon Hdg(G) as the mean of the polygons Hdgτ (G) for all τ ∈ T .
The polygons PRτ is defined in [BH17]. The polygon PR is the mean of the polygons PRτ .
We define the Newton polygon of G as Newt(G).

2.5.4. Case AR. — In this case also we still define G = Gπ which is still polarized and carries an
action as in case C or AU, but we no longer have the λ-compatibility for the Pappas-Rapoport da-
tum. This doesn’t change anything regarding the polygons : we can still define Hodge and Newton
polygons using the action as in [BH17] Section 1 (this doesn’t use the Pappas-Rapoport datum),
and the polarisation implies that Newt(G) = Newt(GD) and Hdg(G) = Hdg(GD) (equalities be-
tween Hdgτ (G) = Hdgτ (GD)). Moreover the Pappas-Rapoport polygon only depends on the
integers (dτ,j)τ,j , and these are symmetric for G and GD (see remark 2.4).

In all the previous cases, thanks to [BH17] Théorème 1.3.1. one has the following result.

Proposition 2.25 ([BH17] Theorème 1.3.1). — One has the inequalities

Newt(G) ≥ Hdg(G) ≥ PR,

and these polygons are all symmetric (except in case (AL)).
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2.6. Stratifications. — Using the previous polygons, we can define subsets of the reduction
of X modulo p, |Xκ|. Denote by Pol the set of polygonal convex functions on [0, . . . , h] with
breakpoints at abscissas in 1

eZ. The previous polygons define two maps,

|Xκ|
Newtπ−→ Pol and |Xκ|

Hdgπ−→ Pol.

Proposition 2.26. — The maps Newtπ and Hdgπ,τ are semi-continuous, in the sense that
polygons can only descend by generisation. Moreover they have same beginning and ending points
(which are always locally constant and constant in our global situation).

Proof. — The result on the Newton polygon is well-known, see for example [RR96] Theorem
3.6. For the Hodge polygon, note that locally on Xκ we can trivialise ωGπ,τ and the action of π
on it is nilpotent (as πe = p = 0 on OXκ). Thus there is (Zariski locally) a continuous map

Xκ −→ Nilppτ ,

to the Nilpotent cone of GLpτ , sending a point to the matrix of π. We can check that the Hodge
stratas are exactly the pullback of the stratification on the nilpotent cone. But now the analogous
result is known for Nilppτ .

There is moreover a (constant) map PRπ : |Xκ| −→ Pol. If π is understood from the context,
we will drop it from the previous notations. Recall the following,

Definition 2.27. — Define the Newton stratification of the reduction mod p of the Pappas-
Rapoport model X ⊗OK Fp =

∐
ν X

ν , by,

Xν = {x ∈ Xκ : Newt(x) = ν}.

The locus Xν=PR of points x ∈ |Xκ| such that Newt(x) = PR(x) is called the µ-ordinary locus
(for π).

In particular the µ-ordinary locus is an open stratum, by Proposition 2.25. There is another
natural stratification with another natural open stratum :

Definition 2.28. — The locus Xν=PR where Hdgπ(x) = PR(x) is called the generalised
Rapoport locus (for π). It contains the µ-ordinary locus because of the inequalities recalled
in the previous section. More generally we can define the Hodge stratification, Xκ =

∐
ν Xν , by

X(ντ ) = {x ∈ Xκ : Hdgπ,τ (x) = ντ ,∀τ}.

As for every τ , we have Hdgπ,τ ≥ PRτ , we have Hdgπ = PR if and only if Hdgπ,τ = PRτ for
all τ . Remark also that in case (C), (AU), (AR), because of the polarisation there is a symmetry
between Hdgπ,τ and Hdgπ,τ . In particular we should only consider symmetric data (ντ ) in these
cases in order to have non empty strata.

Example 2.29. — 1. If the PEL datum is unramified (or if π is unramified) the Hodge
polygon Hdgπ is constant on Xκ, thus the generalised Rapoport locus consists in all the
variety in this case.

2. In the Hilbert-Siegel case, the generalised Rapoport locus is the Rapoport locus, i.e. the
locus where the conormal sheaf ωGπ is locally free as OXκ⊗ZpOF -module. It thus contains
the µ-ordinary locus (which is just the ordinary locus in this case).
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2.7. Smoothness of the integral model. — In this section we prove that the Pappas-
Rapoport model X is smooth if all the primes above p fall in type (AL),(AU) or (C) (i.e. don’t
fall in case (AR)). We will reduce to work locally, thus let G/S be a p-divisible group over a
scheme S, endowed with an action of OL, where L/Qp is a finite extension(2), possibly a polar-
isation, and a Pappas-Rapoport datum. We call such a p-divisible group, with action, eventual
polarisation, and Pappas-Rapoport datum a p-divisible D-module, with D referring to the type
of the extra-datum (including the Pappas-Rapoport datum). Denote by H = H1

dR(G/S) the
locally free OS-module associated to G. It is actually a locally free OS ⊗Zp OF -module of rank
h. It is endowed, except in case (AL), with a polarisation (i.e. a perfect pairing)

< ., . >: H×Hs −→ OS ,
which is alternating, and such that

< x, ay >=< s(a)x, y >, ∀x, y ∈ H,∀a ∈ OF .

Theorem 2.30. — Assume that for every prime π above p, π falls in cases (AL),(AU),(C).
Then X is smooth.

Proof. — As X is of finite presentation and thus noetherian, it is enough to show it is formally
smooth. Let S � R be a surjective morphism of Noetherian rings with ideal I such that I2 = 0.
In particular I is endowed with nilpotent divided powers, and thus we can use Grothendieck-
Messing’s theory. Thus let x ∈ X(R). If p is invertible on R, as we know that X is smooth
in generic fiber, there is y in X(S) above x and we are done. Otherwise, by Serre-Tate, it is
enough to lift the p-divisible group, and we can divide the task between the primes above p in
OB . Thus fix one such prime and G/R the associated p-divisible group (with extra structures).
By Grothendieck-Messing, it is enough to lift ωG together with its Pappas-Rapoport datum as
a locally direct factor (stable by OF and totally isotropic) in

H⊗R S.

We will lift successively ω[1]
G , . . . , ω

[e]
G . Thus fix τ an embedding of Lur. We will work separately

for each τ . Recall that in case (C) or (AU) we have a polarisation

Hτ ×Hτ −→ R,

that lifts to S (as it is defined on the crystalline site of R). In particular in case (AU) it will
be sufficient to choose one element in [τ ] = {τ, τ}, say τ , for each embedding τ , lift the Pappas-
Rapoport datum in Hτ and take its orthogonal which will be a lift of the Pappas-Rapoport
datum for τ . Thus this is similar to case (AL). In case (C), we will need the Pappas-Rapoport
datum to be moreover totally isotropic.

Recall that the sheaf Hτ is locally free as a R[T ]/Q(T )-module, where Q is the Eisenstein
polynomial of an uniformizer. We refer to sections 2.3.2 and 2.5 for the notations. For example
for all ` ∈ {1, . . . , e} we write Q = Q`Q

` with Q`(T ) =
∏`
i=1(T − πi). We have a submodule

ω[1]
τ ⊂ Hτ [T − π1],

which is moreover totally isotropic for hτ,1 by Corollary 2.13 in case (C). Thus, there exists a
(totally isotropic, in case (C)) lift of this module to

Hτ ⊗R S[T − π1]

that we denote by ω̃[1]
τ . Now let us consider

E1
τ =

(
Hτ ⊗R S/ω̃[1]

τ

)
[Q1].

(2)G will be Gπ or Hπ and L will be the corresponding Fπ as in the previous section
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It is a locally free S[T ]/(Q1(T ))-module. Indeed, locally one can find a basis e1, . . . , eh of Hτ⊗RS
over S[T ]/Q(T ) such that ω̃[1]

τ is generated by Q1(T )e1, . . . , Q
1(T )ed. One then sees that E1

τ is
locally free over S[T ]/(Q1(T )), with basis e1, . . . , ed, (T −π1)ed+1, . . . , (T −π1)eh. In particular,
E1
τ [T −π2] is locally free over S, and contains modulo I the image of ω2

τ as a locally direct factor.
In case (C), the fact that ω̃[1]

τ is totally isotropic for h1,τ implies that E1
τ inherits the pairing

from Hτ . Thus, it is enough to lift the image of ω2
τ as a locally direct factor in

E1
τ [T − π2],

which is moreover in case (C) totally isotropic for hτ,2 by Corollary 2.13. But such a lift exists
(by smoothness of the appropriate partial flag variety), thus there exists ω̃[2]

τ ⊂ Hτ ⊗ S lifting
ω

[2]
τ .

Suppose that we have constructed for 1 ≤ ` ≤ e− 1, locally direct factors

ω̃[1]
τ ⊂ · · · ⊂ ω̃[`]

τ ⊂ Hτ [Q`]⊗R S,
which are moreover isotropic for hτ,` in case (C), lifting the previous datum over R to S. Denote

E`τ =
(
Hτ ⊗R S/ω̃[`]

τ

)
[Q`],

As before, it is a locally free S[T ]/(Q`(T ))-module, which contains modulo I the image of ω`+1
τ

as a locally direct factor. In case (C), the fact that ω̃[`]
τ is totally isotropic for h`,τ implies that

E`τ inherits the pairing from Hτ . With the same argument as before, one lifts the image of ω`+1
τ

as a locally direct factor in the locally free S-module

E`τ [T − π`+1],

which is moreover in case (C) totally isotropic for hτ,`+1 by Corollary 2.13. By induction, we
can thus find a lift of the filtration

0 ⊂ ω[1]
τ ⊂ · · · ⊂ ω[e]

τ ,

to S satisfying all the assumptions of the Pappas-Rapoport datum. Thus by Grothendieck-
Messing (as I2 = 0) there exists a point y ∈ X(S) lifting x, and X is smooth.

Remark 2.31. — As shown in the proof, we could have argued slightly differently using a local
model for X in the spirit of [PR05].

Remark 2.32. — Unfortunately the analogous result is not true in case (AR). In [Kra03]
Theorem 4.5, it is constructed a local splitting model for U(1, n − 1) for a ramified quadratic
extension (but the global construction of [PR05] would lead to the same singularities)M which
is regular (thus flat) and whose special fiber is the union of two smooth irreducible varieties of
dimension n−1 crossing along a smooth irreducible variety of dimension n−2. See the calculation
in Appendix A.

2.8. Deformations and Displays. — In order to construct deformations of a point x in Xκ,
associated to a datum (A, λ, i, η, (ω

[·]
• )), we will deform the p-divisible group A[p∞], the action

of OB , the polarisation and the Pappas-Rapoport condition, and use Serre-Tate theory (because
η is a level structure outside p, we can deform it trivially).

Moreover, using the previous simplification of A[p∞] using OB ⊗ Zp and Morita equivalence,
it is enough to deform the polarised p-divisible OFπ -modules Gπ together with their Pappas-
Rapoport filtration, i.e. the p-divisible Dπ-module for all π. We thus remove π from the notation,
and we have G a (possibly) polarised p-divisible O-module. To such a p-divisible group over a
perfect field k of characteristic p is associated a Dieudonné module over W (k) (more precisely
its Dieudonné crystal) and we want to deform it over k[[X]] such that the special fiber at X = 0



ON THE GEOMETRY OF THE PAPPAS-RAPOPORT MODELS FOR PEL SHIMURA VARIETIES 17

corresponds to G, and the generic fiber satisfies better properties, like being µ-ordinary for
example. In order to do this, we will use the theory of displays (cf. [Zin02] and [Lau16] for the
equivalence with etale part). We will be interested mainly in the tools developed in [Wed99]
section 3.2 (particularly 3.2.7 and theorem 3.2.8). In particular

Proposition 2.33 (Zink, Wedhorn, see [Wed99] Theorem 3.2.8)
Let k be a perfect field of characteristic p, G/k (with additional structures ι0, λ0) and

denote P0 the associated display (with additional structures ι0, λ0). Let N be a W (k)-linear
endomorphism of P0, satisfying,

1. N2 = 0
2. N is skew-symmetric with respect to λ0

3. N is O-linear
Then there exists a deformation (P, ι, λ) of (P0, ι0, λ0) (of display with additional structures) over
k[[t]] whose associated p-divisible group (with additionnal structure) (XN , ι, λ) lifts (X, ι0, λ0) and
such that, if P0 is bi-infinitesimal,

(XN , ι, λ)⊗k[[t]] k((t))perf ' BT ′((P, ι, λ)⊗k[[t]] k((t))perf ),

where BT ′ associate to a crystal (over a perfect field) its p-divisible group.

Remark 2.34. — Conditions 1. and 2. are only needed to lift the polarisation. In particular,
they will not be needed in case (AL). We will use this kind of deformation only to modify the
Newton polygon, in particular we will be able to choose any lift of the Pappas-Rapoport datum,
this is why we don’t make any reference to it in the previous proposition.

3. The Hodge stratification

As explained before, we have fixed π ∈ P, and we assume that π is in the cases (AL), (AU) or
(C). We have also defined Hodge polygons, and the generalized Rapoport locus is by definition
the locus where this polygon is minimal.
We will now prove that this locus is dense.

3.1. Lifting a module with filtration. — This is an intermediary section which contains
some results concerning the existence of lifts of modules satisfying certain properties.

Lemma 3.1. — Let M be a free k[[X]]-module of rank h, and N1 ⊂ · · · ⊂ Nr ⊂ M be direct
factors with Ni of rank di. Let Fil be a k-vector subspace of M ⊗k[[X]] k of dimension l. There
exists a lift Fil of L such that in the generic fiber the dimension of L∩Ni is max(0, l+ di − h).

Proof. — We prove this result by induction on the integer r. Let us consider the case r = 1.
Define M = M ⊗k[[X]] k, and let s be the dimension of N1 ∩ Fil. Then there exists a a basis
e1, . . . , ed1 of N1 such that the reduction of e1, . . . , es is a basis for N1 ∩ Fil. One can then
complete in a basis e1, . . . , eh of M such that the reduction of e1, . . . , es, ed1+1, . . . , ed1+l−s form
a basis for Fil.
If l+d1 ≤ h, one defines Fil to be generated by e1+Xed1+l−s+1, . . . , es+Xed1+l, ed1+1, . . . , ed1+l−s.
If l + d1 > h, one defined Fil to be generated by

e1 +Xed1+l−s+1, . . . , eh+s−d1−l +Xeh, eh+s−d1−l+1, . . . , es, ed1+1, . . . , ed1+l−s.

Now let us turn to the general case. Let L0 be a complementary subspace of Fil∩Nk inside Fil.
One will lift the direct sum L0 ⊕Fil ∩Nk. One will take an arbitrary lift of L0; by doing so one
reduces to the case where Fil ⊂ Nk. Let s be the dimension of L1 := Fil ∩ N1. One will then
distinguish two cases.
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If s ≤ h−dk, one defines a lift L1 of L1 such that L1∩Nk = {0} in the generic fiber. Considering
a complementary subspace Fil

′
of L1 in L, one can use the induction hypothesis by considering

the modules N2 ⊂ · · · ⊂ Nk ⊂M .
If s > h − dk, let e1, . . . , eh be a basis of M adapted to the filtration N1 ⊂ · · · ⊂ Nk ⊂ M .
Assume also that the reduction of e1, . . . , es is a basis for L1. Let L0 be the vector subspace
of L1 spanned by the reduction of e1, . . . , eh−dk . Let us consider the lift L0 of L0 spanned by
e1 + Xedk+1, . . . , eh−dk + Xeh. Let Fil′ be a complementary subspace of L0 in Fil. To lift
Fil′, we are thus reduced to lift it in M ′ = Vect(es+1, . . . , edk), endowed with the filtration
N1 ∩M ′ ⊂ Nk−1 ∩M ′ ⊂M ′. We are thus reduced to the case of a smaller k, and by induction
we are done.

In the polarized case, one will use the following lemma.

Lemma 3.2. — Let M be a free k[[X]]-module of rank 2g with a perfect pairing, and N ⊂ M
be a totally isotropic direct factor rank g. Let Fil be a totally isotropic k-vector subspace of
M ⊗k[[X]] k of dimension g. There exists a lift Fil of Fil such that in the generic fiber the
dimension of Fil ∩N is 0.

Proof. — Let us first consider the case where Fil = N ⊗k[[x]] k. Let e1, . . . , eg be a basis of N ,
completed in a basis e1, . . . , e2g ofM , such that the pairing 〈ei, ej〉 is 1 if j = g+i and 0 otherwise.

One will define the module Fil to be generated by the columns of the matrix
(

Ig
XA

)
, where

Ig is the identity matrix and A is any invertible symmetric matrix of size g.
Let us now turn to the general case. DefineM := M ⊗k[[x]] k, N := N ⊗k[[x]] k and L0 = Fil∩N .
Let L1 be a complementary subspace of L0 in Fil. Let L1 be a totally isotropic lifting of L1 in
M . One will look for a lift Fil inside L⊥1 and containing L1. One is then led to consider the
moduleM1 := L⊥1 /L1, which is free of rank 2(g−s), where s is the dimension of L1. The module
N ∩ L⊥1 is free of rank g − s, and so is its projection onto M1. By doing so, one is reduced to
the previous case.

3.2. Density of the generalized Rapoport locus. — In this section, we use the previous
lemmas to prove :

Theorem 3.3. — The generalized Rapoport locus is (open and) dense.

To prove this theorem, we do it for one π at a time and find a lift "locally", i.e. for Gπ. We
will thus consider the possible cases : (AL) or (AU) and (C).

Remark 3.4. — Again, the analogous result in case (AR) is false, as shown in the examples in
Appendix A.

3.2.1. Cases (AL) and (AU). —

Proof. — Let x be a point of Xκ := X ⊗ κ and G = Gπ the associated p-divisible group. We
want to prove that there exists a deformation of x which lies in the generalized Rapoport locus.
Thanks to Grothendieck-Messing, we deform the Hodge filtration of G. For each τ ∈ T , one uses
the previous lemma to deform ωτ . By duality in case (AU), one automatically has a deformation
of ωτ , hence of the whole of ωG.
Let us now describe the way to lift ωτ . Let D = H1

dR,τ ; it is a free as a k[X]/(Xe) module.
Let M be the (τ -part of the) evaluation of the crystal at k[[t]]; it is free as a k[[t]][X]/(Xe),
and reduces to D modulo t. To lift ωτ , one successively lifts ω[1]

τ , . . . , ω
[e]
τ . First, one lifts ω[1]

τ

in M [X], the X-torsion of M . Let L1 be any such lift. Then in order to lift ω[2]
τ , one works in
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M1 := X−1L1/L1. One has the submodule N1 = M [X]/L1. One uses the lemma 3.1 to lift ω[2]
τ

to a module L2 in such a way that the dimension of L2 ∩M [X] in generic fiber is max(d1, d2).
Then one considers M2 := X−1L2/L2. One has the submodules N ′1 = (M [X] + L2)/L2 and
N ′2 = (M [X2] ∩X−1L2 + L2)/L2. Again, one uses the lemma 3.1, and get a lift L3 of ω[3]

τ such
that in generic fiber the dimensions of L3∩M [X] and L3∩M [X2] are respectively max(d1, d2, d3)
and max(d1 + d2, d1 + d3, d2 + d3).
First, we prove two auxiliary lemmas.

Lemma 3.5. — There exists a lift (ω̃
[i]
τ ) of ω[1]

τ ⊂ · · · ⊂ ω
[e]
τ ⊂ D in D ⊗ k[[t]] satisfying the

Pappas-Rapoport conditions and such that

dim(ω̃
[i]
τ )[Xj ] = max

0<k1<···<kj≤i
dk1 + · · ·+ dkj .

Proof. — Indeed by induction we have proven the result for i = 1, 2, 3. Suppose it is true for
i ≥ 1, and denote

Mi = X−1Li/Li, Nj = (M [Xj ] ∩X−1Li + Li)/Li ∀j ≤ i, L = ω[i+1]
τ /ω[i]

τ .

A direct calculation shows that dimk[[t]]Mi = h, dimk L = di+1, and dimk[[t]]Nj = h −
dim(Li[X

j ]\Li[Xj−1]). We use the lemma 3.1 with these data to find L such that

dimk[[t]] L ∩N j = max(0, di+1 − dim(Li[X
j ]\Li[Xj−1]).

Let ω̃[i]
τ the preimage of L via X−1Li −→Mi, we thus have

dim ω̃
[i]
τ [Xj ] = dimLi ∩N j + dimLi[X

j ] = max(Li[X
j ], di+1 + dimLi[X

j−1])

= max
0<k1<···<kj≤i+1

dk1 + · · ·+ dkj .

Thus the lemma is proved.

Lemma 3.6. — Let S be a κ-scheme and ω[e] ⊂ (OS ⊗OFur OF )h be a sub-OS ⊗OF -module.
Then ω[e] is in the generalized Rapoport locus for the datum (di)1≤i≤e (i.e. Hdg(ωe) = PR(di))
if and only if for all j,

dimω[e][Xj ] = max
0<k1<···<kj≤e

dk1 + · · ·+ dkj .

Proof. — As the two properties are independent of the ordering of the values (di) suppose to
simplify d1 ≥ d2 ≥ · · · ≥ de. Then the last proposition means dimω[e][Xj ] = d1 + · · ·+ dj which
means exactly Hdg(i) = PR(i).

Reducing inductively the datum given in lemma 3.5 to k[[t]]/(tn), one get a map by
Grothendieck-Messing (note that k[[t]]/(tn) −→ k[[t]](tn−1) is endowed with nilpotent divided
powers),

Spf(k[[t]]) −→ Xκ.

But as Xκ is a scheme, this induces a map x̃ : Spec(k[[t]]) −→ Xκ, generizing our point x, and
such that in generic fiber the module x̃∗ωτ [1/t] is given by ω̃τ [1/t], thus lies in the generalised
Rapoport locus by Lemma 3.6.
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3.2.2. Case (C). —

Proof. — One keeps the same notations as the previous section. One lifts the module ωτ in M .
But in this case, the module M has a perfect pairing, and one needs to consider totally isotropic
lifts.
One starts by considering the module M1 := M [X]. This module has a perfect pairing h1

(induced by the one on M , see section 2.3.3 and remark 2.14), and we can lift the module ω[1]
τ

to a module L1 ⊂ M1, which is still totally isotropic for h1. Then one consider the module
M2 := X−1L1/L1. Since L1 is totally isotropic in M1 for h1, the pairing h2 induces a pairing on
M2. Using the lemma 3.2, one takes a lift L2 of ω[2]

τ , such that L2/L1 is totally isotropic in M2

for h2, and disjoint from M [X]/L1 in generic fiber.
One repeat this process and gets lifts L1 ⊂ L2 ⊂ · · · ⊂ Le. In generic fiber, the multiplication by
X is an isomorphism between Li+1/Li and Li/Li−1 for every 1 ≤ i ≤ e− 1, and the lift Le of ωτ
is thus generically free as a OF ⊗τ k[[t]] = k[[t]][X]/(Xe)-module. As before, by Grothendieck-
Messing this leads to an algebraisable map

Spf(k[[t]]) −→ Xκ,

generizing x, and whose generic fiber lies in the Rapoport locus.

3.3. Futher strata. — As the Hodge stratification is constructed using the Nilpotent cone
of some GLn, for which the stratification is a strong stratification, we can investigate the same
question for X. First recall the definition of a strong stratification.

Definition 3.7. — Let X be a topological space. A (weak) stratification of X, with respect
to a partially ordered set (I,≤), is a decomposition

X =
∐
i∈I

Xi,

such that Xi ⊂
∐
j≤iXj . A (weak) stratification is a strong stratification if moreover

Xi =
∐
j≤i

Xj .

Example 3.8. — 1. In the case of an unramified PEL datum, the Hodge stratification of
Xκ is a strong stratification (this is trivial as there is only one stratum).

2. Still in the case of an unramified PEL datum, the Newton stratification and the Ekedahl-
Oort stratification of Xκ are strong stratifications (see [VW13] Theorem 2 and [Ham13]
Theorem 1.1).

Proposition 3.9. — In general, the Hodge stratification is not a strong stratification.

Proof. — This has nothing to with do with abelian varieties but rather with the space of partial
flag on a fixed space together with a nilpotent operator (called Spaltelstein Varieties). Let K be
any field, V = K6 and suppose given a full flag

0 ⊂ V1 ⊂ V2 ⊂ V3 = V,

with dimK Vi = 2i. Suppose moreover that there is π ∈ EndK(V ) such that π(Vi) ⊂ Vi−1 for all
i ≥ 1. This corresponds to (the local model of) a Pappas-Rapoport datum (AL) with e = 3 and
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d1 = d2 = d3 = 2. Fix a basis e1, . . . , e6 of V such that e1, e2 is a basis of V1, e1, . . . , e4 a basis
of V2. Then set the following choices for π in this basis

π1 =

 0 I2 0
0 0 0
0 0 0

 and π2 =

 0

 1 0 0
0 1 0
0 0 1


0 0

 .

In both cases π satisfies the condition of a Pappas-Rapoport datum, with π2
j = 0. The Hodge

polygons are associated with the partitions (4, 2) and (3, 3) of 6, and (3, 3) ≤ (4, 2), but there
exists no deformation from ((Vi), π1) to a space with Hodge polygons (3, 3) which satisfies the
Pappas-Rapoport condition. Indeed, if it were the case then the Hodge polygon of (π1)|V2

will
descend by generisation, thus would remain the same and thus the π-torsion of the deformation
should intersect V2 only along V1, and π will send V2 surjectively to V1. Now that means, as π
sends V3 to V2 and π2 send V3 to 0 (as it is of Hodge polygon (3, 3)) thus π sends V to V1, and
thus the kernel of π is of rank 4, a contradiction.

Denote X the moduli space of all possible ((Vi), π) with di = 2 and π(Vi) ⊂ Vi−1. Denote
X(3,3) the Hodge stratum corresponding to the Hodge polygon of partition (3, 3) and X(4,2) the
analogous one. If X(3,3) ⊃ X(4,2) 3 x = ((Vi), π1) take C an irreducible component of X(3,3)

passing through x, and look at the local ring of C at x, OC,x. This induces a generisation of x
such that the Hodge polygon is above (3, 3), under (4, 2) and by the previous calculation can’t be
equal to (3, 3). Thus it is generically (4, 2) too. This is true for all components C, thus, locally
at x, X(4,2) is an open component of X(3,3), and thus x 6∈ X(3,3).

We still hope to construct a strong stratification on Xκ, by "cutting" in parts the Hodge
stratums. Unfortunately, the situation gets very complicated when the ramification index e
grows. One has however the following result when e = 2. Recall that in polarised cases ((C),(AU)
and (AR)) we only consider symmetric data (ντ )τ for the Hodge strata.

Proposition 3.10. — If e ≤ 2 and every π falls in case (AL),(AU) or (C), then the Hodge
stratification is a strong stratification.

Proof. — If e = 1, there is only one Hodge stratum and everything is trivial. If e = 2, we can
assume dτ,1 ≥ dτ,2. Indeed in case C there is an equality, and in case AL or AU considering
the dual group (which coincide with G(s) in case (AU), thus we can in case (AU) consider
only half of the embeddings τ as we did in the proof of theorem 2.30) we can reduce to this
case. The τ -Hodge polygon is given by two integers aτ,1 ≥ aτ,2 such that if x ∈ Xκ(k), then
ωτ,x[π] is a k-vector space of dimension aτ,1 and ωτ,x is of dimension aτ,1 + aτ,2. As ω[1]

τ,x is of
dimension dτ,1 and of π-torsion by the Pappas-Rapoport condition, we have that dτ,1 ≤ aτ,1.
Thus, all the possible τ -Hodge polygons are classified by couples (aτ,1, aτ,2) with aτ,1 ≥ dτ,1 and
aτ,1 + aτ,2 = dτ,1 + dτ,2. Moreover if (aτ,1, aτ,2) and (bτ,1, bτ,2) are two τ -Hodge polygons, the
former is above the latter if and only if aτ,1 ≥ bτ,1. The Generalised Rapoport locus corresponds
to (aτ,1, aτ,2) = (dτ,1, dτ,2) Thus we will prove that given any point x ∈ X(k) with τ -Hodge
polygon (aτ,1, aτ,2) not in the generalised Rapoport locus, there is a deformation to k[[t]] with
τ -Hodge polygon (aτ,1−1, aτ,2 +1). Fix such a point, and fix a k[π]/π2 basis of H1

dR,τ , e1, . . . , eh,
such that πe1, . . . , πed1 is a basis of ω[1]

τ over k and e1, . . . , er, πed1+1, . . . , πed1+s (necessarily with
r ≤ d1) induces a basis of ωτ/ω

[1]
τ . Then r+ s = d2 and aτ,1 = d1 + s. As this point is not in the

generalised Rapoport locus, we have s > 0, thus r < d1. Then set in H1
dR,τ ⊗k[π]/π2 (k[π]/π2)[[t]],

ω̃τ
[1]

= k[[t]](πe1, . . . , πed1) and ω̃τ = ω̃τ
[1]

+k[[t]](e1, . . . , er, ed1+s+ter+1, πed1+1, . . . , πed1+s−1).
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In case C, we need to choose a lift of Vect(e1, . . . , er, πed1+1, . . . , πed1+s) in π−1ω̃τ
[1]
/ω̃τ

[1] (which
has a perfect pairing), whose intersection with H1

dR,τ [π]/ω̃τ
[1] is of dimension s− 1. But we can

quotient further by Vect(e1, . . . , er) (which is totally isotropic), and we are reduced to the case
r = 0. In this case this is as in the proof of the first part of Lemma 3.2, taking the matrix A to
be symmetric of rank 1.

Then, as in the proof of subsection 3.2.1 there is a lift of x whose Hodge filtration is given by
ω̃τ . Moreover,

dimk((t))perf (ω̃τ ⊗ k((t))perf )[π] = d1 + s− 1.

Remark 3.11. — The calculation of Appendix A still shows that even when e = 2, the analo-
gous result in case AR is false.

4. The µ-ordinary locus

4.1. Density of the µ-ordinary locus. — The goal of this section is to show the following
theorem,

Theorem 4.1. — Let π be a prime as in section 2.5, and assume that π falls in case (AL),
(AU) or (C).Then the µ-ordinary locus (for π) Xν=PR inside X is dense.

To prove it, we will once again follow the strategy of deformations of the p-divisible group (by
Serre-Tate’s theorem), do it one prime at a time and thus in each of the cases (AL),(AU),(C).
Moreover, by theorem 3.3, we only need to deform p-divisible groups that are already in the
generalised Rapoport locus. Our main tool is proposition 2.33. From now on we will only
consider lifts of a crystal in the sense of section 3.2.3 of [Wed99]. We thus call a deformation of
a crystal over k a display over k[[t]] of the form Pα for some α ∈ HomW (k[[t]])(P,W (tk[[t]])P ) in
the notations of [Wed99] (with P the base change to k[[t]] of our crystal). A generisation will
then be the generic fiber of a deformation.

Remark 4.2. — In case (AR) our argument breaks down. It is likely that in general the
µ-ordinary locus is not dense in every irreducible component, similarly to the Hilbert case at
Iwahori level, described in [Sta97]. This is confirmed by the case of U(1, n − 1), calculated by
[Kra03], whose calculation is made in Appendix A.

Moreover, for cases (AU) and (C), we will have to use slightly more adapted polarisations.
Indeed, the objects considered have a natural polarisation, compatible in a certain sense to the
additional action of a ring O, but not O-hermitian (or bilinear). As the methods used in this
section are of purely local nature, we can forget about PEL datum used to define the variety
X, and thus we will freely reuse their notations, in particular F will denote Frobeniuses in this
section. Denote L/L+ the extension of (local) fields at the prime considered (thus L = L+ in
case C), and denote s ∈ Gal(L/L+) the non trivial automorphism (if it exits, s = id otherwise).
We denote e, f the ramification index and residual degree of L+, and denote κ the residue field
of L. Denote Diff−1 = Diff−1

L the inverse different of L, and O = OL, and tr : Diff−1 −→ Zp. We
call a p-divisible D-module (resp. a D-crystal, a D-display) a p-divisible group (resp. a crystal,
a display) with extra structure depending on the situation (i.e. an action of O, together with
a polarisation in case (AU) or (C) satisfying certain properties). In this section we can forget
a bit about the Pappas-Rapoport data, as explained later, thanks to Theorem 3.3, thus we will
not make it appear in the data D. In case (AU) and (C), we have the following,
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Proposition 4.3. — Let k be a perfect field of characteristic p, and G be a p-divisible D-module.
Its Dieudonne module M , a free W(k)⊗Zp O-module, together with two applications

V : M −→M, and F : M −→M,

which are σ−1-(resp σ-)linear, satisfying FV = V F = p id, is endowed with a s-antihermitian
WO(k)-pairing,

h : M ×M −→W (k)⊗Diff−1,

satisfying

h(x, Fy) = h(V x, y)σ, ∀x, y ∈M.

Moreover, if < ., . > denote the original alternating pairing on M , we have trF/Qp h =< ., . >.
Such a h is unique. In particular in case (C), h is alternating. If P = (P,Q, F, V −1) is a D-
display over k[[t]] with pairing <,>, then there exists an s-antihermitian W (k[[t]])⊗ZpO-pairing

h : P × P −→W (k[[t]])⊗Zp Diff−1,

satisfiying trh =<,> and vh(V −1x, V −1y) = h(x, y) for all x, y ∈ Q, and which is moreover
compatible with the previous construction over k and k((t))perf .

Proof. — The existence of h s-antihermitian satisfying trh =<,> is [Lan13] Lemma 1.1.4.5.
for R = W (k) or R = W (k[[t]]) and R0 = Zp. Thus, it suffices to prove the compatibility with
F and V . But ∀x, y ∈M,o ∈ O,

tr oh(x, Fy) = trh(ox, Fy) =< ox, Fy >=< V ox, y >σ=< oV x, y >σ

= tr(h(oV x, y)σ) = tr(oh(V x, y)σ).

Thus, by [Lan13] Corollary 1.1.4.1, we have h(x, Fy) = h(V x, y)σ, for all x, y ∈ M . Similarly,
for a display P,

tr(o ·v h(V −1x, V −1y)) = tr(vh(V −1(ox), V −1y)) =v tr(h(V −1(ox), V −1y))

=v< V −1(ox), V −1y >=< ox, y >= tr(h(ox, y)) = tr(oh(x, y)),

for all o ∈ O, thus vh(V −1x, V −1y) = h(x, y). The compatibility is obvious when looking at the
display associated to a Dieudonné module (and unicity).

Unfortunately, it will not be possible to always assume h alternating, even if <,>= trh is, as
shown by the following example :

Example 4.4. — Let C = R2 endowed with the R-linear alternating pairing C×C −→ R given
in basis (1, i) of C by (

0 −1
1 0

)
,

whose h is given by i
2z1z2.

But in case (C), as s ∈ Gal(L/L+) satisfies s = id, we have that h is anti-symmetric, thus
alternating (as Char(WO(k)) 6= 2).
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4.2. The case (AL). — Let xG a point in the Rapoport locus, with values in a perfect field
k, corresponding to a group G and fix τ0. Note that any generisation of xG still lives in the
Rapoport locus. Let M the Dieudonné crystal of G over k.

Lemma 4.5. — In order to prove the density result, one can assume that for all τ , the first
slope of the Hodge-Polygon is zero. In particular, for all τ , there exists xτ ∈Mτ such that

Fτ (xτ ) 6≡ 0 (mod π).

Proof. — Indeed, otherwise denote by aτ the first slope for all τ , this means that Fτ : Mσ−1τ −→
Mτ is divisible by πaτ on the Dieudonné module of G. Denote F 0

τ = 1
πaτ Fτ and V 0

τ = πaτVτ .
Denote by G′ the p-divisible group associated to (M,F 0, V 0). Then it is easily checked that the
association G 7→ G′ is bijective on p-divisible group with O-action with fixed τ -Hodge polygons
on the source to fixed τ -Hodge polygons where each τ -slope is decreased by aτ . Moreover this is
compatible with display-deformations to k[[t]] and specialisation to k((t))perf in proposition 2.33.
Thus we only need to deform G′, whose first Hodge-slope is zero for all τ .

Thus, assume the first slope of Hdgτ (G) is zero for all τ . If the first slope for Newt(xG) is
also zero, then there is a splitting

G = G0 ×G′,

where the Newton polygon of G′ does not have a slope zero (see [BH17], Théorème 1.3.2). If we
can find a deformation of G′ which is µ-ordinary, then we are finished. Thus up to exchanging
G by G′, we can suppose that the first slope of Newt(G) is non zero and proceed by induction
of the height of G.

Let x ∈Mτ0 such that F (x) 6≡ 0 (mod π) (this is possible by the preceding lemma). Let i(x)
be the minimal integer such that

F i(x)(x) ≡ 0 (mod π).

As the Newton polygon of G doesn’t have a zero slope, there exists such a i(x). Denote i(G) (or
i(xG)) the maximum of i(x), for x ∈Mτ0 . By what preceed, we know that i(G) ≥ 2.

Lemma 4.6. — There exists a generisation x′Gof xG such that i(x′G) > f .

Proof. — Suppose i = i(xG) ≤ f . Thus F i(x) ≡ 0 (mod π). By the previous lemma; there is
xi−1 ∈ Mσi−1τ such that F (xi−1) 6≡ 0 (mod π). As y = F i−1(x) 6≡ 0 (mod π) but F (y) ≡ 0
(mod π), (xi−1, y) is a linearly independant family in Mσi−1τ/πMσi−1τ . Define an homomor-
phism of M/πM by

Nτ ′ = 0, ∀τ ′ 6= σi−1τ and Nσi−1τy = xi−1, Nσi−1τxi−1 = 0,

and extend by zero N on a complementary basis of Mσi−1τ . Denote by N any nilpotent lift of N
to M . Define DN the extension of M to W (k[[u]]) given by N as in [Wed99] (see also [Zin02]).
We can calculate

F iN (x) = FN (FN (F i−2
N (x))) = FN (FN (F i−2(x))) = FN (y ⊗ 1 + xi−1 ⊗ u) ≡ FN (xi−1 ⊗ u)

≡ F (xi−1)⊗ u 6≡ 0 (mod π).

Thus overW (k((u))perf ) the display DN correspond to a p-divisible group G′ such that i(G′) > i
by Proposition 2.33. By induction we get the result.

Lemma 4.7. — The exists a deformation of xG such that the generic fiber is not infinitesimal.
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Proof. — By the previous lemma, we can assume F f (x) 6≡ 0 (mod π). If G is not itself infinites-
imal, let r0 be the minimal integer such that

F r0f (x) ≡ 0 (mod π).

The family (x, F f (x), . . . , F (r0−1)f (x)) is linearly independent mod π. Indeed, suppose we are
given

λ0x+ λ1F
f (x) + · · ·+ λr0−1F

(r0−1)f (x) ≡ 0 (mod π);

and denote i the smallest integer such that λi 6= 0 (mod π). Then,

F if (x) = λ−1
i (λi+1F

(i+1)f (x) + · · ·+ λr0−1F
(r0−1)f (x)),

and thus F (r0−i−1)f (F if (x)) = F (r0−1)f (x) ≡ 0 (mod π), which is impossible. Set N such that

Nτ ′ = 0,∀τ ′ 6= τ, Nx = NF if (x) = 0,∀i 6= 1 and NF f (x) = x.

Set DN , FN the associated display over W (k[[u]]) which reduces to (M,F ). We calculate,

F fN (x) = F f (x) + uNF f (x) = F f (x) + ux,

and more generally,
F ifN (x) = F if (x) + uF (i−1)f (x0) + · · ·+ uix0.

In particular,
F r0fN (x) = 0 + uF (r0−1)f (x) + · · ·+ ur0x 6= 0 (mod π).

Thus, the base change to W (k((u))perf ) of DN satisfies r0(DN ) > r0(M). By induction we can
assume that r0 > dimD, thus that D is not infinitesimal.

By induction on the number of Newton and Hodge slopes of G that are not equal (see
lemma 4.5), we get a chain of generisations starting to xG and ending to a µ-ordinary point.

Corollary 4.8. — In case (AL), the µ-ordinary locus XPR
µ−ord is dense.

4.3. The case (AU). — In the linear case, as our deformation by N will be polarised, which
means that we deform in the same time Fτ and Fτ , these two deformations might cancel out.
Thus, we will work almost as in [Wed99], by finding a deformation sequence (which assures that
there will be no cancelations when calculating F 2f

N ). We denote M = M (mod π).

Definition 4.9. — (xτ ) ∈M =
⊕

τ Mτ is a deformation sequence if
1. xτ ∈Mτ for all τ ,
2. Fxτ 6≡ 0 (mod π) for all τ ,
3. If F 2xτ 6≡ 0 (mod π), then Fxτ = xστ .

We will use proposition 2.33 to deform a given p-divisible O-module to a µ-ordinary one. By
theorem 3.3 we can suppose that the p-divisible group G associated to a point xG ∈ XPR we
start with is in the Rapoport locus, i.e. Hdg(xG) = PR(xG). In particular, the first slope of
Hdg(xG) coincides with the one of PR(xG). We will construct the deformation by induction,
using that if G is not bi-infinitesimal, we can decompose,

G = Get ×Gbi ×Gm,
where Get is etale and Gm is multiplicative, and Gbi is bi-infinitesimal. If Gbi is µ-ordinary,
then so is G, and thus we only need to deform Gbi. From now on, suppose G is bi-infinitesimal
and we will prove that there exists a deformation of (some modification of) G that is polarised
but not necessarily bi-infinitesimal generically. By induction on the Newton polygon of the bi-
infinitesimal part, we will then deduce that we can deform G to a µ-ordinary p-divisible group.
Just like in the beginning of section 4.2 we can suppose that the first slope of Hdgτ (xG) is zero
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for all τ , but here there will be some minor complications, and we need to introduce the notion
of a non-necessarily parallel O-crystal (NNP for short), and the version for displays.

Definition 4.10. — Let (aτ )τ∈T be a collection of non negative integers such that aτ +aτ ≤ e
for all τ . A NNP polarized O-crystal (of type AU), of amplitude (aτ )τ , over a perfect field k is
a tuple (M,V, F, ι, h(·, ·)) where

1. M is a free W (k) module,
2. F is σ-linear and V is σ−1-linear,
3. ι : O −→ EndW (k)M such that F (ι(x)m) = ι(x)F (m) and V (ι(x)m) = ι(x)V (m) for all
x ∈ O,m ∈M .

4. The pairing
h(·, ·) : M ×M −→W (k)⊗Diff−1,

is perfect, anti-hermitian, and satisfies

ι(x)h(m,n) = h(ι(x)m,n) = h(m, ι(x)n), ∀x ∈ O,m, n ∈M,

such that we can decompose
M =

⊕
τ :Lur↪→Cp

Mτ ,

and thus accordingly we have maps,

Fτ : Mσ−1τ −→Mτ and Vτ : Mτ −→Mσ−1τ ,

such that for all τ , VτFτ = pπ−aτπ−aτ IdMσ−1τ
, FτVτ = pπ−aτπ−aτ IdMτ

and

h(Fτxτ , xστ ) = h(xτ , Vτxστ )σ and h(Vτxστ , xτ ) = h(xστ , Fτxτ )σ
−1

.

The tuples of integer (aτ )τ∈T is called the amplitude of (M,F, V, ι).

Similarly we can make the following analogous definition,

Definition 4.11. — Assume R = k[[t]] for a perfect field k ⊃ κ. A NNP polarized O-display
P over R of amplitude (aτ )τ is a quintuple (P,Q, F, V −1, ι, h) such that

1. P is a locally free W (R)⊗Zp O module via ι : O −→ EndW (R) P ,
2. Q ⊂ P is a W (R)⊗O-submodule,
3. F : P −→ P and V −1 : Q −→ P are σ-linear and V −1 is an epimorphism,
4. ι : O −→ EndW (k)M such that F (ι(x)m) = ι(x)F (m) and V −1(ι(x)n) = ι(x)V (n) for all
x ∈ O,m ∈ P, n ∈ Q.

5. The pairing
h(·, ·) : P × P −→W (R)⊗Diff−1,

is perfect, anti-hermitian, and satisfies

ι(x)h(m,n) = h(ι(x)m,n) = h(m, ι(x)n), ∀x ∈ O,m, n ∈ P,
such that we can decompose the action of Our := OLur ,

P =
⊕
τ

Pτ and Q =
⊕
τ

Qτ ,

with
Fτ : Pσ−1τ −→ Pτ and V −1 : Qσ−1τ −→ Pτ ,

such that for all τ ,
IRPσ−1τ ⊂ πaτQσ−1τ ,

and for all τ , Qτ/IRPτ ⊂ Pτ/IRPτ is locally a direct W (R)-factor, and moreover

V −1
τ (v(w)x) = πaτπaτwFτ (x), ∀x ∈ Pσ−1τ , w ∈W (R).
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Moreover we ask that
vh(V −1x, V −1y) = πaτ+aτh(x, y), x ∈ Qσ−1τ , y ∈ Qσ−1τ .

Example 4.12. — A polarised O-crystal is a particular case of a non-necessarily parallel polar-
ized O-crystal for which the amplitude is constant equal to 0, i.e. aτ = 0 for all τ , and similarly
for a display. The Dieudonné module of a p-divisible group over a perfect field k, with O-action,
such that the τ -Hodge polygon of G (see [BH17]) has first slope aτ for all τ can be modified
to get a NNP-crystal of amplitude (aτ )τ , see next proposition. The base change to k[[t]] of the
(display associated to) this NNP-crystal is then a NNP-display of amplitude (aτ )τ .

Definition 4.13. — The τ -Hodge polygon of a non-necessarily parallel O-crystal (M,F, V, ι)
is defined by

Hdgτ (M,F, V, ι)(i) =
c1 + · · ·+ ci

e
,

where d = dimOMτ and Mτ/FMσ−1τ '
⊕d

i=1WO(k)/πciWO(k), and c1 ≤ c2 ≤ · · · ≤ cd.

Proposition 4.14. — Assume k is perfect and contains κ, the residue field of L. To any
polarised O-crystal (M,F, V, ι, h), we can associate a non-necessarily parallel polarised O-crystal

(M0, F 0, V 0, ι0, h0),

for which the first slope of Hdgτ (M0, F 0, V 0, ι0) is zero. Moreover, if aτ denote for all τ the
first slope of Hdgτ (M,F, V, ι), then (M0, F 0, V 0, ι0, h0) is of amplitude (aτ )τ . Moreover, we have
(M0, ι0, h0) = (M, ι, h) and for all τ ,

Fτ = πaτF 0
τ and Vτ = πaτV 0

τ .

If (P,Q, V −1, F, ι, h) is the base change of (M,F, V, ι, h) to k[[t]] (i.e. the polarized O-deformation
with N = 0 in Proposition 2.33), we can also associate to it another (NNP-)display by the same
operation, such that the Dieudonne modules of the base change over k and k((t))perf coincides
with the previous construction for crystals. In particular, the association M −→ P −→ D :=
P ⊗ k((t))perf does not change the Hodge polygons.

Proof. — Indeed, M is a module over W (k) ⊗Zp O, which we can split M =
⊕

τ Mτ over
τ : Our ↪→ OC . As F is σ-linear, Fτ : Mσ−1τ −→ Mτ , and Fτ is generically inversible, thus M
is free as W (k)⊗Zp O-module. By hypothesis, Fτ is divisible by πaτ , thus set F 0

τ = π−aτFτ . As
F∨τ = Vτ , we have that Vτ is also divisible by πaτ , thus by πaτ and we can set V 0

τ = π−aτVτ :
Mτ −→Mσ−1τ . By proposition 4.3, M is endowed with an hermitian pairing

h : M ×M −→W (k)⊗Zp Diff−1,

such that trh =< ., . > and h(x, Fy) = h(V x, y)σ. Thus, for x ∈Mσ−1τ , y ∈Mτ ,

h(πaτF 0
τ x, y) = πaτh(F 0

τ x, y), and h(x, πaτV 0
τ y) = πaτh(x, V 0

τ y).

Thus,
h(F 0

τ x, y) = h(x, V 0
τ y)σ.

M is free over W (k)⊗O, and we have that V 0Mτ = 1
πaτ VMτ and thus as a display over W (k)

(V 0)−1 : V 0Mτ
πaτ−→ VMτ

V −1

−→Mτ .

Now if (P,Q, V −1, F ) is the base change of (M,F, V, ι, h), we have that P is free over
W (k[[t]]) ⊗Zp O. We can thus decompose P and Q over W (R) ⊗Zp O =

∏
τ W (R)τ ⊗Ourτ O =∏

τ W (R)τ [π]/(Eτ (π)).
We have the σ-linear morphism

V −1
τ : Qσ−1τ −→ Pτ ,
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and we set Q0 = VM0⊗W (k)W (k[[t]]) with (V 0
τ )−1 = (1⊗πaτ )V −1

τ : Q0
σ−1τ

πaτ⊗1−→ Qσ−1τ
V −1
τ−→ Pτ .

As Pτ is a free W (R)τ [π]/(Eτ (π))-module, thus we can also divide Fτ,P = Fτ,M ⊗ 1 by πaτ and
the rest is a simple verification. As Qσ−1τ = πaτQ0

σ−1τ , we have that both the τ -Hodge polygons
of M and M ′ are those of Q0, i.e. of M0, with τ -slopes increased by aτ .

Proposition 4.15. — Denote by M a polarised O-crystal, and M0 the non-parallel crystal
associated to it above. Suppose we have a (polarised, O-)deformation P0 ofM0 by a NNP-display
over k[[t]] given as in Proposition 2.33, then we have an associated (polarised, O-)deformation
P of M (with P a parallel display) such that (P ⊗k[[t]] k((t))perf )0 = P0 ⊗k[[t]] k((t))perf . If
moreover the crystal D0 = P0 ⊗ k((t))perf is not bi-infinitesimal, then we can decompose,

D0 = D0,et ×D0−bi ×D0,mult,

and we have an associated decomposition of D = P ⊗ k((t))perf ,

D = Da−et ×Dbi ×Da−mult,

where Da−et is isoclinic of slope 1
ef

∑
τ aτ and Da−mult = (Da−et)∨. Moreover the association

M 7→ D does not change the Hodge polygons.

Proof. — Let P0 = (P 0, Q0, F 0, (V 0)−1) be the display associated to the base change of M0

to k[[t]], and P the analogous display for M . Suppose given N a W (k)-linear morphism of
P0 ⊗k[[t]] k of square zero, which is O-linear, and skew-symmetric. We thus have a deformation
P0
N by setting F 0

N = (id +[t]N)F 0 and (V 0
N )−1 = (id +[t]N)(V 0)−1. Let us set PN the analogous

deformation for P.
We claim that the crystal PN ⊗k[[t]] k((t))perf satisfies (PN ⊗k[[t]] k((t))perf )0 = P0

N ⊗k[[t]]

k((t))perf . Indeed, as FN = (id +[t]N)F on P, and F is the pullback of F on M , we have that
Fτ is divisible by πaτ for all τ , thus on P ⊗ k((t))perf (FN )0 is 1

πaτ FN = (id +[t]N) 1
πaτ F as N

is O-linear, and this is (F 0)N . The same is true for V −1, thus we have the claim. Now if D0 is
not bi-infinitesimal, we have a decomposition

D0 = D0−et ×D0−bi ×D0,mult,

where D0,mult ' (D0,et)∨ by the polarisation on D0. But as D0 = (D)0, we have the asserted
decomposition of D, and a direct calculation gives the slope of Da−et. As passing from P to PN
does not change the Hodge filtration, we have the assertion on Hodge polygons.

With the previous proposition we can explain our strategy. We start with a point in the
Rapoport locus. As any deformation of it is still in the Rapoport locus, by the previous propo-
sition for example, we will be able to lift the Pappas-Rapoport filtration canonically (cf theo-
rem 3.3) and the deformation will still be in the Rapoport locus, thus we can forget about the
Pappas-Rapoport datum for now. Then we will modify the crystal M of our p-divisible group
by the previous proposition, deform this crystal inductively by a display, and ultimately the
non-necessarily parallel crystal generisation of M0 will not be bi-infinitesimal anymore. Thus
the associated deformation of M will split, and by induction on the Newton polygon, we will be
able to conclude. More precisely we can always write

G = G1 ×G00 × (G1)D,

by Hodge-Newton decomposition ([BH17] Théorème 1.3.2), where G1 is the biggest subgroup of
G such that the Hodge and Newton polygon of G1 are equal. Remark that G00 is still polarized
(and in the Rapoport locus if G is). The induction is on the height of G00.

There will be a slight issue in the case where aτ + aτ = e for all τ in our method. Fortunately
we have the following proposition
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Proposition 4.16. — Let M be a polarised O-crystal such that for all τ , if aτ denotes the first
slope of Hdgτ , aτ + aτ = e. Then the p-divisible group associated to M is µ-ordinary.

Proof. — As FτVτ = p IdMτ for all τ , this implies that F 0
τ and V 0

τ are invertible σ and σ−1

respectively W (k)⊗O-morphisms. Thus the Newton slopes of F 0
σf−1τ ◦ · · · ◦ F

0
τ are all equal to

one, and thus Fσf−1τ ◦ · · · ◦ Fτ (which we write usually F f ) is isoclinic of slope 1
e

∑
τ aτ . Thus

G is isoclinic, and thus µ-ordinary.

Thus let xG ∈ XPR be a point in the Rapoport locus, and denote M the bi-infinitesimal
part of its crystal. For now on by proposition 4.14, we can suppose that M is a non-necessarily
parallel crystal, whose first slope for Hdgτ is zero for all τ . In particular this means that for all
τ , there exists x ∈Mτ such that

F (x) 6≡ 0 (mod π).

By proposition 4.16, we can moreover assume that there exists τ0 such that aτ0 + aτ0 < e
(otherwise xG is in the µ-ordinary locus and we are done). Thus we have that Fτ0Vτ0 ≡ 0
(mod π).

Lemma 4.17. — Denote f = 2d where [L : Qp] = ef . Let M/W (k) be a NNP polarised
O-crystal as before (bi-infinitesimal with first slope of Hdgτ being zero). Then there exists a
deformation of M to a (NNP polarised O)-display P = (P,Q, F, V −1, h) over k[[X]] and x ∈ Pτ0
such that F d(x) 6= 0 (mod π).

Proof. — Suppose that it is not already the case for M , i.e. for all x ∈Mτ0 F
d(x) ≡ 0 (mod π).

Take x ∈ Mτ0 such that F (x) 6≡ 0 (mod π). Let r be the maximal integer such that F r(x) 6≡ 0
(mod π). F r(x) ∈ Mσrτ , and take y ∈ Mσrτ such that F (y) 6≡ 0 (mod π). Thus F r(x) and
y are not colinear and are non-zero modulo π, thus we can construct an endomorphism Nr of
Mσrτ that is Oσrτ -linear and such that Nr(F r(x)) = y and Nr(y) = 0, and N2

r = 0. Then set
Nr = −N∗r ∈ End(Mσrτ ) and for every embedding χ 6= σrτ, σrτ , set Nχ = 0. N is O-linear,
polarised and N2 = 0. Now in PN = M ⊗W (k) W (k[[X]]), we can calculate,

F r+1
N (x⊗ 1) = F 2

N (F r−1
N (x⊗ 1)) = F 2

N (F r−1(x)⊗ 1) = FN (F r(x)⊗ 1 + y ⊗X)

= F r+1(x)⊗ 1 + F (y)⊗X ≡ XF (y) 6≡ 0 (mod π).

By induction, we can thus assume that F d(x) 6≡ 0 (mod π) up to deform M .

Lemma 4.18. — LetM as in the conclusion of the previous lemma. There exists a generisation
D of M such that there exists y ∈ Dτ0 satisfying

F d(y) 6≡ 0 (mod π).

Moreover there is still x ∈ Dτ0 such that F d(x) 6≡ 0 (mod π).

Proof. — If it is not already the case forM , let y ∈Mτ0 such that F (y) 6≡ 0 (mod π) and denote
r the maximal integer such that F r(y) 6≡ 0 (mod π). We will construct a deformation such that
F r+1(y) 6≡ 0 (mod π). Choose z ∈Mσrτ such that F (z) 6≡ 0 (mod π). We then set N as in the
previous lemma :

Nσrτ (F r(y)) = z, Nσrτ (z) = 0, Nσrτ = −N∗σrτ , Nχ = 0 ∀χ 6= σrτ, σrτ .

The same calculation shows that F r+1
N (y ⊗ 1) 6≡ 0 (mod π). Moreover, F dN (x) reduces to F d(x)

modulo X, thus F dN (x) is still non zero modulo π as F d(x) is.

Lemma 4.19. — LetM be as in the conclusion of Lemma 4.17. Then there exists a generisation
D such that F 2d(x) 6≡ 0 (mod π) for some x ∈ Dτ0 .
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Proof. — If it is not already the case, let x be the element given in 4.17 and up to deform M we
can also have an element y ∈Mτ as in the previous lemma. Then we can construct an O-linear
N such that N2 = 0 and

NτF
d(x) = y,Nτ (y) = 0, Nτ = −N∗τ , Nχ = 0 ∀χ 6= τ, τ .

Set (P,Q, FN , V
−1
N ) as in [Wed99]. Then we can calculate,

F 2d
N (x) = F 2d(x) +XNF 2d(x) +XF d(y) +X2NF d(y).

But F 2d(x) ≡ 0 (mod π), thus NF 2d(x) ≡ 0 (mod π) as well by linearity of N . Moreover
F d(y) 6≡ 0 (mod π) thus

F d(y) +XNF d(y) 6≡ 0 (mod π),

as it is the case modulo X, and thus F 2d
N (x) 6≡ 0 (mod π).

Proposition 4.20. — Let x ∈ XPR(k). Then there exists a sequence of deformations xi, i =
0, . . . , n such that xi ∈ XPR(ki[[Xi]]) for all i = 1, . . . , n and some perfect field ki above
ki−1((Xi−1)) with k1 = k and x0 = x, xi (mod X) = xi−1 ⊗ki−1[[X]] ki, and xn ⊗kn[[Xn]]

kn((Xn))perf is µ-ordinary.

Proof. — By theorem 3.3, we can assume that we have constructed x1 and x1 ⊗ k((X1)) is in
the Pappas-Rapoport locus. We will proceed by induction on the number of slopes of the bi-
infinitesimal part of xi already constructed. If xi has no or only one slope for its Newton polygon,
we are done as it is µ-ordinary. Otherwise we can always assume that Gxi is split,

Gxi = G1
xi ×G

00
xi ×G

2
xi ,

with Hodge and Newton polygons of G1
x1

being equal, G2
xi = (G1

xi)
D and the first slopes

of the Newton and Hodge polygons of G00
xi differ. By the previous results, we can more-

over assume that there exists r > 0 and we have constructed x1, . . . , xr such that M0 :=
M((Gxr ⊗ kr((Xr))

perf )00)0 satisfies the conclusion of lemma 4.19, and denote x ∈ M0
τ0 such

that (F 0)2d(x) 6≡ 0 (mod π). We can always assume that

(1) h(x, (F 0)d(x)) ≡ 0 (mod π)).

Indeed, if it is not the case, then for all m ∈Mστ0 ,

h(x+V 0m, (F 0)d(x)) = h(x, (F 0)d(x))+h(V 0m, (F 0)d(x)) = h(x, (F 0)d(x))+h(m, (F 0)d+1(x))σ
−1

.

As (F 0)d+1(x) 6= 0 (mod π), there existsm such that the previous expression vanishes. Replacing
x by x + V 0m, which doesn’t change F 0(x) as F 0

τ0V
0
τ0 ≡ 0 (mod π)(3), we are done. Denote s

the maximal integer such that (F 0)s(x) 6≡ 0 (mod π), and write

s = 2dq + j, 0 ≤ j < 2d.

Set m0 = F 2(q−1)d+j(x). Then the sequence (m0, F
0(m0), . . . , (F 0)2d−1(m0)) is a deformation

sequence. Moreover, we have by applying (F 0)2(q−1)d+j+i to (1), and by semilinearity of h on
the left,

h((F 0)i(m0), (F 0)i+d(m0)) = 0 ∀i ∈ {0, . . . , d}.
We can now follow [Wed99] to construct N and thus a deformation of M0 which is not in-
finitesimal anymore. As h(F 2d(m0), F d(m0)) = 0 the subspace Vect(F 2d(m0),m0, F

d(m0))
(mod π) ⊂ Mσjτ/π ⊕Mσjτ/π is totally isotropic. We can thus find U a totally isotropic com-
plement, U = Uσjτ ⊕ Uσjτ , such that h(., .) induces a perfect pairing between

M0 := Vect(F 2d(m0),m0, F
d(m0)) (mod π) and U.

(3)here we use that aτ0 + aτ0 < e
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We can then set N(F 2d(m0)) = m0, Nm0 = NF d(m0) = 0, and extends uniquely N to U such
that N is skew-symmetric. Then N2 = 0 (mod π) and we can extend N by zero on (M0 ⊕ U)⊥

and lift to M so that N2 = 0, and is still skew symmetric and O-linear. Then we can calculate
that for the deformation PN ,

(F 0
N )2d(m0⊗1) = F 0

N ((F 0)2d−1(m0)⊗1) = (F 0)2d(m0)⊗1+m0⊗X ≡ Xm0 (mod Ker(F (mod π))).

In particular F 0
N is not nilpotent, and thus N0 = P0

N ⊗ k((X))perf is not bi-infinitesimal. The
p-divisible group associated to PN gives a k[[X]]-point xr+1 of XPR such that Gxr+1 ⊗k[[X]] k =
Gxr ⊗kr[[X]] k and Gxr+1

⊗ k((X)) is split,

Gxr+1 = G1
xr+1
×G00

xr+1
×G1,D

xr+1
,

with G00
xr+1

having height less than G00
xi . By induction on this height, we get the result.

Corollary 4.21. — In case (AU), the µ-ordinary locus XPR
µ−ord is Zariski dense.

4.4. Case C. — In this case, M = ⊕τMτ and

h : M ×M −→W (k)⊗Diff−1
F ,

is OF -linear and alternating. Let xG ∈ X(k) a point corresponding to a group G (with k perfect).
We suppose that xG is in the Rapoport locus (by 3.3, as in this case Rapoport and generalised
Rapoport loci coincide).

Lemma 4.22. — If G is bi-infinitesimal and in the generalized Rapoport locus, there exists a
deformation sequence (as in definition 4.10).

Proof. — As G is bi-infinitesimal, denote for x ∈ M , w(x) = sup{n|Fn(x) 6≡ 0 (mod π)}. As
G is in the generalized Rapoport locus (and in case C we have dτ = h

2 , for all τ), we have for
all τ , a xτ ∈ Mτ such that w(xτ ) ≥ 1. Then, this is proved exactly as in [Wed99], Proposition
4.1.4.

Lemma 4.23. — There exists a deformation G′ of G such that G′ is not bi-infinitesimal.

Proof. — If G is not bi-infinitesimal, any deformation will do. Otherwise, let (xτ )τ be the defor-
mation sequence given by the previous lemma. We can construct a deformation endomorphism
N such that NFxτ = 0 if Fxτ = xστ and NFxτ = xστ otherwise. Indeed, as h is OF -linear, this
is done exactly as in [Wed99] Proposition 4.4.3. The calculation of FN using this deformation
shows that G′, the deformation of G associated to N , is not bi-infinitesimal in generic fiber.

Proposition 4.24. — In case (C), the ordinary locus is dense.

Proof. — By theorem 3.3, it suffices to prove that each x ∈ XPR(k), k a perfect field, can be
deformed into a ordinary p-divisible group. We can split

G = Gm ×G00 ×Get,

where G00 is bi-infinitesimal. We will argue on the height of G00. If G00 is trivial, then G is
ordinary and we are done. Otherwise by the previous lemma, there is a deformation H of G00

which is not bi-infinitesimal, thus G̃ = Gm ×H ×Get is a deformation of G and

htO G̃
00 = htOH

00 < htO G
00.

Thus by induction, there exists a deformation of G which is ordinary.
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4.5. Ordinary Locus. —

Definition 4.25. — A p-divisible group over a base of characteristic p is said to be ordinary
if it is an extension of an etale group by a multiplicative one. Equivalently, it is ordinary if its
Hasse invariant is invertible. Denote by Xord the (open) subset of Xκ of ordinary p-divisible
groups.

Proposition 4.26. — We have the following properties;
1. If the ordinary locus is non-empty, it is equal to the µ-ordinary locus and is thus dense.
2. The ordinary locus is non-empty if and only if (d

[i]
τ ) is constant for all τ, i.

3. The ordinary locus is non-empty if and only if the local reflex field E is equal to Qp.

Proof. — If (d
[i]
τ ) is constant, say equal to d, then the Pappas-Rapoport Polygon has slopes 0

(d-times) and 1 ((h− d) times). In particular,

Xµ−ord = Xord.

If the ordinary locus is non-empty, then a point x corresponding to an ordinary p-divisible group
and has a Newton polygon with slopes only 0 and 1, and same ending point as PR, thus as
Newt(x) ≥ PR, this means that PR(d

[i]
τ ) has only slopes 0 and 1, and thus (as the breaking

points are at the abscissa d[i]
τ ) the collection (d

[i]
τ ) is constant. This proves 1. and 2. E is the

(finite) extension of Qp, inside K, fixing the collection (d
[i]
τ ). Thus, if the ordinary locus is non

empty, E = Qp. For every σ ∈ Gal(K/K0), σ · d[i]
τ = d

[σ·i]
τ where i correspond to a conjugate

πi, of π, and πσ·i = σ(πi). Thus Gal(K/K0) is transitive on the collection (d
[i]
τ )i. Thus if

E = Qp, d[i]
τ = dτ for all i. But Gal(K0/Qp) is transitive on the set T , and thus if E = Qp,

d
[i]
τ = d for all τ, i. Another way to say it is that, using the characteristic zero description di,τ ′ ,
τ ′ ∈ Hom(K,Qp), Gal(K/Qp) acts transitively on Hom(K,Qp).

Appendix A. A specific example in case (AR)

In this section we give explicit calculations for the local rings of the Pappas-Rapoport model
for U(1, 1) and U(2, 1) and a quadratic extension which p 6= 2 is ramified. This setting has been
studied (in slightly greater generality) in [Kra03]. Thus we fix p 6= 2, F/Qp a ramified extension
of degree 2, with uniformiser π and denote π = s(π) its conjugate.

A.1. The case of U(1,1). — For U(1, 1) the moduli problem PRZ (local analog of the defi-
nition of X 2.21) with values in a OF -scheme S is given by

– G a p-divisible OF -module over S of OF -height 2, dimension 2, and denote ι : OF −→
End(G),

– a polarisation, i.e. an isomorphism GD ' G(s),
– a locally direct factor ω[1] ⊂ ωG of rank 1, such that

(ι(π)⊗ 1− 1⊗ π)ω[1] = {0};

(ι(π)⊗ 1− 1⊗ s(π))(ωG) ⊂ ω[1].

In characteristic p, we have

ω[1] ⊂ ωG ⊂ H1
dR(G) = H1

dR(G)[π2].

We can thus look at π−1ω[1], which contains ωG by hypothesis on ω[1], and is locally free of rank
3. Thus

ω[1]′ := (π−1ω[1])⊥,
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where ⊥ denotes the orthogonal with respect to the perfect pairing on H1
dR induced by the

polarisation, is locally free of rank 1, and inside ωG.
The associated local model M is given by (F [1] ⊂ F) in Λ ⊗OE OS = O2

F ⊗Zp OS , endowed
with (say) the pairing in the basis πe1, e1, πe2, e2,

J =


0 1
−1 0

0 1
−1 0


satisfying analogous conditions (see [Kra03] Definition 4.1). The induced pairing on H1

dR[π] or
Λ/πΛ, is given by J̃(πei, πej) = J(πei, ej) and thus by the matrix I2. To understand locally the
moduli space PRZ ⊗ Fp, we can make the calculation on the local model M. As Λ/pΛ is of
rank 4 over Zp, this amounts to understand the possible inclusions F [1] ⊂ F ⊂ Λ⊗OS and their
deformations. We will fix once and for all the basis πe1, πe2, e1, e2 of Λ and identify the points
ofM⊗ Fp with 4x2 matrices, first column generating F [1] and first two generating F .

Up to obvious symmetries, a point ofM is given by

ω =


1 0
x a

b
y

 ,

and as πF ⊂ F [1], we must have bx = y, and F is totally isotropic thus b+xy = 0, i.e b(1+x2) = 0.
Thus either b = 0 and we have

ω =


1 0
x 1

0
0

 ,

which is not in the generalised Rapoport locus (here this is just the Rapoport locus) as ω is
π-torsion. Or b 6= 0 and thus

ωPR =


1 0
x a

1
x

 ,

Thus,M⊗Fp is locally given by two lines Lb=0 and L1+x2=0 = 0 intersecting at a point outside
of the Rapoport locus,

x0 =


1 0
x 1

0
0

 ,

such that 1 + x2 = 0. Remark that 1 + x2 = 0 is exactly the condition so that F [1]′ = F [1], i.e.
F [1] is totally isotropic for the induced pairing on Λ/π. L1+x2 is the closure of the Rapoport
locus, and Lb=0 is completely away from the Rapoport locus. In particular, the (generalised)
Rapoport locus is not dense (and thus so is the (µ-)ordinary locus). The local ring at x0 is given
by

(Fp[A,B,X]/(B(1 +X2)))(B,X−x,A−a).
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A.2. The case of U(2,1). — The problem is similar, in this case we defineM parametrizing
F [1] ⊂ F ⊂ Λ ⊗ OS locally direct factor of ranks 2 and 3, F being totally isotropic, satisfying
analogous assumptions with respect to π, and Λ = O3

F with the pairing given in the basis
(πe1, e1, πe2, e2, πe3, e3),

J =


0 1
−1 0

0 1
−1 0

0 1
−1 0

 .

Looking at points ofM⊗ Fp as matrices in the basis (πe1, πe2, πe3, e1, e2, e3) we see that, up to
obvious symmetries,

ω =


1 0
0 1 0
x y a

b
c
d

 ,

with bx+ cy = d (as πF ⊂ F [1]) and b+ xd = 0 and c+ yd = 0 (as F is totally isotropic). This
amounts to variables x, y, a, d and equation d(1 + x2 + y2). Thus as before we have two smooth
surfaces (given by d = 0 – when ω is π-torsion, and 1 +x2 + y2 when F [1]′ is totally isotropic for
the induced pairing), intersection along a smooth curve (given by d = 1+x2 +y2 = 0). Moreover,
for any point z on the curve, the local ring at z is given by

(Fp[X,Y,A,D]/(D(1 +X2 + Y 2)))(D,X−x,Y−y,A−a).

In this case the surface S : 1 + x2 + y2 = 0 contains the generalised Rapoport locus as a dense
subset (corresponding to d 6= 0) and coincides with its closure, and the other surface is completely
disjoint from the generalised Rapoport locus. In particular, Theorem 2.30, 3.3 (thus also theorem
4.1 and proposition 3.10) are false in this example too, as in the previous one.
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